Potential for deep convection in the Arctic Basin under a warming climate and contribution to the AMOC

Camille Lique

Laboratoire d'Océanographie Physique et Spatiale, France

> Matthew Thomas Yale University, USA

Helen Johnson, Yves Plancherel University of Oxford, UK

Sea Ice workshop – June 2019

Rationale: MLD in the North Atlantic

Mean March MLD (climatology from de Boyer Montégut et al. 2004) and sea ice edge position.

Today, in the North Atlantic, deep Mixed Layer Depths (MLDs):

> are found only in a few sites

> are on average tight to the sea ice edge, where we find huge T/S gradients and atmospheric flux

> are symptomatic of dense water formation

Heuzé et al. 2015

Rationale: MLD in a warming climate ?

CMIP5 models – Max MLD over 1986-2005

Heuzé et al. 2015

Rationale: MLD in a warming climate ?

CMIP5 models – Max MLD over 2081-2100 (RCP8.5)

Large spread between models

.... But a consistent tendancy for MLDs to become shallower where MLD are deep in present day conditions

Heuzé et al. 2015

Rationale: MLD & AMOC

Model results suggest a link between MLD and AMOC intensity (although the processes at play are not fully understood)

Danabasoglu et al. 2013; Jahn & Holland 2013

QUESTIONS

Under a warming climate:

- Is there a potential for deep convection in the Arctic Basin, as the sea ice edge retreats northward ?
- Could it impact the AMOC ?

QUESTIONS

Under a warming climate:

- Is there a potential for deep convection in the Arctic Basin, as the sea ice edge retreats northward ?
- Could it impact the AMOC ?

TOOLS

- Outputs from two coupled climate models
 - > Met-Office HiGEM (high res: 1/3° for the ocean) Shaffrey et al. 2009
 - > CNRM climate model (ORCA1 for the ocean) Voldoire et al. 2013
- Comparison of two runs: CTRL and $4 \times CO_2$ (roughly comparable with RCP8.5)
- ARIANE Lagrangian model (Blanke & Raynaud 1997) applied offline to the CNRM model, following the method of Thomas et al. 2015

MLD change in *HiGEM*

MLD (in meters, <u>computed with a criteria in density</u>) and position of the sea ice edge :

> shallower MLD in the North Atlantic

> deeper MLD in the Nordic sea and the Eurasian Basin of the Arctic Ocean, close to the new sea ice edge

MLD change in *HiGEM*

> MLD can reach up to 1000 m in the Eurasian Basin

Change in SST:

8

6

4

2

0

-2

- > response to the atmosphere, modulated by the presence of sea ice
- > large increase of the seasonal cycle

Change in SST:

- > response to the atmosphere, modulated by the presence of sea ice
- > large increase of the seasonal cycle

Change in SSS:

- > strong freshening in the
- Canadian Basin (spin up of the Beaufort Gyre)
- > SSS increases in the Eurasian Basin (AW inflow influence)

Intensification of the gyres,
resulting from the increasing
transfer of momentum to
the ocean as sea ice cover is
reduced

Change in SSS:

- > strong freshening in the
- Canadian Basin (spin up of the Beaufort Gyre)
 - > SSS increases in the EurasianBasin (AW inflow influence)

Stratification (defined as the density difference between 500m and the surface, in kg/m³)

> Change in SSS imprint on surface density

- > Results in large changes of stratification
 - \diamond Enhanced in the Canadian Basin
 - \diamond Suppressed in the Eurasian Basin

> Lack of stratification in the Eurasian Basin allows for the emergence of deep convection in years when sea ice retreats the most.

Importance for the AMOC ?

 We determine the origin of the water masses flowing southward at 10°N (i.e. where they have subducted at the base of the mixed layer), using the Lagrangian model ARIANE applied to CNRM-ORCA1

- Zonal shift :
 - > the Arctic and the Subtropics become increasingly important
 - > No more subduction in the subpolar gyre.

Importance for the AMOC?

Contribution to the AMOC at 26°N computed with ARIANE applied to CNRM - ORCA1

> Zonal shift of the main contributions to the AMOC

- Arctic becomes increasingly important
- increase of the subtropical contribution (due to change in stratification)

Summary

Under a warming climate:

• Is there a potential for deep convection in the Arctic Basin, as the sea ice edge retreats northward ? YES

Results from the HiGEM model suggest that:

- $\diamond\,$ The Arctic Ocean surface will become warmer and saltier in the Eurasian Basin

♦ Deep MLD (down to 1000m) are found in the Eurasian, near the sea ice edge

Could it impact the AMOC ? YES

Lagrangian analysis of the CNRM model suggests that emerging subduction in the the Arctic Ocean (and the subtropical gyre) could contribute significantly to the AMOC... > A changing Arctic may not just be a threat for the AMOC

Lique, Johnson & Plancherel (2018): Emergence of deep convection in the Arctic Ocean under a warming climate, *Climate Dynamics*

Lique & Thomas (2018): Latitudinal shift of the Atlantic Meridional Overturning Circulation source regions under a warming climate, *Nature Climate Change*