Introduction	Method	Results	Conclusion

Arctic sea ice decline weakens the Atlantic meridional overturning circulation

Florian Sévellec

Laboratoire d'Océanographie Physique et Spatial, Brest, France Ocean and Earth Science, University of Southampton, Southampton, UK

A. V. Fedorov & W. Liu

Sea ice in the Earth System June 2019

Arctic sea ice decline weakens the AMOC

Introduction	Method	Results	Conclusion

Is the AMOC slowing down?

 \diamondsuit Rapid measurement of AMOC at 26°N:

 \Rightarrow The AMOC seems to slow-down on a decadal timescale.

Introduction	Method	Results	Conclusion

Is the AMOC slowing down on longer timescale?

 \Rightarrow This "Warming Hole" has been conjectured to be the signature of a long-term AMOC slowdown.

(Drijfhout et al., 2012; Rahmstorf et al., 2015)

Arctic sea ice decline weakens the AMOC

Introduction	Method	Results	Conclusion

 \diamond Objective:

Can we attribute this AMOC slow-down?

- \diamond <u>Method</u>:
- 1. We compute AMOC sensitivity to constant surface buoyancy fluxes,
 - Optimization procedure based on Lagrangian multipliers,
 - This requires the "adjoint" model (NEMO-OPA at 2° resolution),
 - AMOC baroclinic volume transport at 1,500 m depth and 50°N.
- 2. Optimal fluxes for a range of imposed duration from 10 yr to 200 yr.
- 3. We separate the fluxes in 3 regions:

- ARCT: Arctic Ocean,
- ► NATL: North Atlantic,
- **ROTO**: Rest Of The Oc.

\Rightarrow A dynamical attribution of <u>heat flux</u> influences on the AMOC.

Arctic sea ice decline weakens the AMOC

AMOC sensitivity to constant heat flux

- North Atlantic dominates changes from years to a few decades,
- Arctic dominates changes from several decades to centuries.

(Fluxes are normalized to 1 W m^{-2} .)

 \Rightarrow On centennial timescales, despite NATL being 3 times as large as ARCT, ARCT is twice as effective for weakening the AMOC!

AMOC sensitivity to constant heat flux

Arctic sea ice decline weakens the AMOC

Introduction	Method	Results	Conclusion

Change in oceanic heat flux in the Arctic since 1979

RECONSTRUCTED NET OCEANIC HEAT FLUX CHANGES

[2005-2014] W m⁻² vs [1979-1988] 30 20 ♦ ERA-Interim structure, 10 Ω ♦ Uniformally rescaled to -10 $+0.55 \text{ W m}^{-2}$ (IPCC, 2013). -20 -30

 \Rightarrow Arctic is warmed at a rate of ${\sim}8$ W m^{-2} over the last 35 yr.

Introduction	Method	Results	Conclusion

AMOC response to change in surface oceanic heat flux

A 100-yr steady change, equivalent to the current one, would slow down the AMOC by 4 Sv,

- The Arctic contribution to this slow-down is nearly 3 times as efficient as the N. Atl. one.
- ► Unlike for other oceanic regions, Arctic heat flux change reduces northward Atl. heat transport ⇒ Warming Hole?

Introduction	Method	Results	Conclusion

Change in Arctic sea ice cover since 1979

Arctic sea ice decline weakens the AMOC

Introduction	Method	Results	Conclusion

Simulating Arctic sea ice changes

Arctic sea ice decline weakens the AMOC

Introduction	Method	Results	Conclusion

Impact of Arctic sea ice change in the North Atlantic

- AMOC slow-down by \sim 50% in 100 yr,
- Cooling of up to 2°C in the subpolar N. Atl.

Introduction	Method	Results	Conclusion

Conclusion (Published as: Sévellec et al., Nature Climate Change, 2017)

Attribution of the AMOC slow-down to buoyancy fluxes.

- Potential impacts:
 - Subpolar North Atlantic has higher potential impact on timescales from years to a few decades,
 - Arctic has higher potential impact on timescales from several decades to centuries (6 times as efficient).
 - Results for freshwater are qualitatitively equivalent but quantitatively one order of magnitude weaker than for heat.

Reduction in Arctic sea ice increases ocean heat uptake.

- Projected impacts:
 - AMOC would slow-down by 4-6 Sv in a century under current observed changes,
 - > 30% can be attributed to the **N. Atl.** and 60% to the **Arctic**.
 - Consequently, N. Atl. STT would cool-down by up to 2°C.

Introduction	Method	Results	Conclusion

Arctic sea ice decline weakens the AMOC

・ロト・アン・ヨン・ヨン ヨークへで Sea ice in the Earth System - Jun 2019 - Brest

AMOC sensitivity to constant freshwater flux

Arctic sea ice decline weakens the AMOC