Turbulence and layering surrounding an anticyclonic vortex:

seismic observations and high resolution simulations

Claire Ménesguen, (LPO-Ifremer)

Sylvie Le Gentil, Richard Schopp, Thomas Meunier, Ana Aguiar (LPO-Ifremer)

Louis Géli, Bruno Marsset (LGG-Ifremer)

Nori Aiki (JAMSTEC, Japan)

Lien Hua

Outline

- Observations of submesoscales surrounding an interior anticyclonic vortex
- High resolution simulations:
 - instability and balanced turbulence of an idealized Meddy
 - temperature and salinity stirring
 - possible implication for a direct cascade of energy to dissipation

Outline

- Observations of submesoscales surrounding an interior anticyclonic vortex
- High resolution simulations:
 - instability and balanced turbulence of an idealized Meddy
 - temperature and salinity stirring
 - possible implication for a direct cascade of energy to dissipation

Historical observations of mesoscale coherent vortex in the Gulf of Cadiz

Meddy Bobby (Pingree&Le Cann, 1993)

Meddies are vortices in geostrophic balance of hot and salty mediterranean water

Historical observations of mesoscale coherent vortex in the Gulf of Cadiz

Small scale structures surround the mesoscale vortex

B

Small scale structures are located where the mean gradient is maximum

Small scale structures surrounding the mesoscale vortex

Acoustic reflectivity:
$$r = \frac{\partial(\rho c)}{\partial z} \otimes Source \sim \frac{\partial}{\partial z}T$$

Seismic sections reveal the lateral continuity (over ~50km) of small scale structures surrounding the meddy

Small scale structures surrounding the mesoscale vortex

Small scales features are stacked over the vertical (60-80m): layering

Progress in oceanographic observations due to seismic data

Reconstructed Temperature

2D high resolution temperature&salinity fields reconstructed

from the reflectivity signal and XBT casts

Context

Does mesoscale feature produce such small scale layering?

Does it lead to an interior route to dissipation?

Outline

- Observations of submesoscales surrounding an interior anticyclonic vortex
- High resolution simulations:
 - instability and balanced turbulence of an idealized Meddy
 - temperature and salinity stirring
 - possible implication for a direct cascade of energy to dissipation

Our idealized meddy

QG spectral model (Hua&Haidvogel 87),

on an f-plane, with density as the only thermodynamic tracer.

Vortex initialization: Bu=0.15 (flat lens), Ro=0.3

(Hua & al., 2013)

Initialization of QG-PV

In both cases, vortices will be destabilized by baroclinic instability

Linear baroclinic unstable modes and critical levels

Eigenmodes of the mix barotropic/baroclinic instability confine PV perturbation on critical layers

Non-linear evolution: layering formation at critical levels

Wind up of PV anomalies at critical levels

Acoustic reflectivity deduced from the model leads to the same type of layering signal than the one observed in seismic data

B

Layering characteristics: from observations

☞ Temperature and $\frac{\partial T'}{\partial z}$ exhibit horizontal spectral laws between -2 and -5/3

Layering characteristics: as reproduced by the QG model

we reproduce, in the QG model, horizontal spectral laws between -2 and -5/3 for T and $\partial_z T$

P

Passive tracer shows spiraling structures in the layering area

Geometric effect of 2D spiral structures (Gilbert, 1988 and Lundgren, 1982)

Outline

- Observations of submesoscales surrounding an interior anticyclonic vortex
- High resolution simulations:
 - instability and balanced turbulence of an idealized Meddy
 - temperature and salinity stirring
 - possible implication for a direct cascade of energy to dissipation

Isopycnal stirring of temperature and salinity

The 60-80m vertical scale is mostly due to isopycnal stirring of T and S (88% of T, S anomalies are compensated in density)

Isopycnal stirring of temperature and salinity

Primitive Equations/NonHydrostatic model: NHOES (H. Aiki) with a f-plane approximation

The equation of state depends on temperature and salinity: $\rho = \rho_0 (1 - \alpha_0 T + \beta_0 S)$ - to include stirring of tracers

- $\mathcal{K}_T = \mathcal{K}_S$ that excludes double diffusive effects

Isopycnal stirring of temperature and salinity

Layering characteristics: as reproduced by a PE model, with T and S

T and $\partial_z T$ from the high resolution PE model (1000³) present the same horizontal spectral laws between -2 and -5/3 (typical of 2D spiral structures) than the one obtained in observations

Outline

- Observations of submesoscales surrounding an interior anticyclonic vortex
- High resolution simulations:
 - instability and balanced turbulence of an idealized Meddy
 - temperature and salinity stirring
 - possible implication for a direct cascade of energy to dissipation

QG cumulated energy fluxes

Inside the layering = preferred localization of direct transfer of energy (kinetic and potential).

QG cumulated energy fluxes

QG cumulated energy fluxes

The direct cascade is function of the model viscosity (and the model resolution - *Arbic et al. 2013*)
What are the next mechanism in PE that could lead to dissipation in the layering?

Summary

Observations :

persistent vertical stacked coherent layers (~80m height, 50km long) around meddies:
88% of the signal in temperature and salinity are density compensated,
but there is still density layers observed.

- [-2 -5/3] horizontal spectral laws for T and T_Z

High resolution 3D simulations :

- layering in PV and ρ_z is produced in a QG model by the destabilization of a lens shape vortex (baroclinic instability, strong on critical levels)

- layering in Temperature and Salinity is mainly produced by the isopycnal winding up of small scales around the vortex.

- tracers have dominant spiraling patterns and they give similar [-2 -5/3] horizontal spectral laws (ρ , ρ_z and a passive tracer in QG, T and T_z in PE)

- energy is produced in QG at the submesoscales range where the layering is formed but the production seems to depend on the viscosity&resolution of the model (*Arbic & al 2013*).

What limits vertical scales of layering? (~80m)

The isopycnal winding up of tracers can not explain the arrest of a vertical scale.

What is an unbalanced mechanism that leads to dissipation of energy in the layering area?

Secondary instability: double-diffusive effects (often invoked) or other process?

Work in progress with high resolution QG, PE & NH models