Stirring and mixing of active and passive tracers in the atmosphere and ocean

Guillaume Lapeyre

Laboratoire de Météorologie Dynamique Ecole Normale Supérieure, Paris

Horizontal stirring

Deformation of a tracer blob under the action of straining and stretching

- Filamentation
- Dispersion of particles
- Tracer gradients

Water vapor at tropopause

Oceanic Chlorophyll

Stirring and tracer gradients

Spatial manifestation of tracer cascade to small scales

$$\frac{DC}{Dt} = 0 \quad \Rightarrow \quad \frac{D\nabla C}{Dt} = -[\nabla u]^{\top} \nabla C$$
Okubo-Weiss quantity: $OW = \text{Strain}^2 - \text{Vorticity}^2$
Okubu 1971, Weiss 1991)
$$\sqrt{OW} \quad \text{eigenvalue of } [\nabla u]$$

 $\nabla C \approx \exp(\sqrt{OW}t)$

Two opposite effects:

OW > 0 growth of gradient norm
 OW < 0 rotation of gradient orientation
 Kinematic criterion: OW depends only on u

Lien Hua contribution

Okubo-Weiss assume stationary abla u

wrong as shown by Basdevant and Philipovitch (1994)

need to take into account dynamics

Lagrangian accelerations

 \Rightarrow Hua and Klein criterion (Hua, Klein, 1998; Hua, McWilliams, Klein 1998)

• Galilean invariance of dynamics \Rightarrow *r*-criterion (Lapeyre, Klein, Hua 1999)

CONTOUR FROM -14 TO 14 BY 1

CONTOUR FROM 50 TO 500 BY 50

Okubo-Weiss

CONTOUR FROM 400 TO 4800 BY 400

Hua Klein criterion similar to salinity gradient

QG simulation

Hua, Klein, McWilliams 1998

Transport barriers

Particles released around the Antartic polar vortex in the stratosphere

Bowman 1994

- Particles do not penetrate inside the vortex
- Existence of a transport barrier on the boundary
 - Associated to strong tracer gradients

Transport barriers

- Mixing along the boundary, but not accross it
- Reduced diffusivity even if strong winds and shears (Nakamura, Shuckburg, Haynes, Ferrari)

Transport barriers identified through "Invariant Manifolds"

- generalize streamlines for non-stationary flows
- Lines of maximum dispersion forward and backward in time

(Wiggins, Haller, Legras)

Forward Manifold

Stratospheric polar vortex

26/10/96

Backward manifolds

dispersion backward in time (Joseph and Legras 2002)

Streamlines Velocity

Manifolds (blue and red dots) Potential vorticity (color shading)

 O_2 and O_3 Hyperbolic points: leaking fluid outside the vortex

Identification through Lyapunov exponents λ

For two initially close particles $\delta x = x_1 - x_2$ λ measures exponential dispersion rate over time τ

 $\lambda = \frac{1}{\tau} \log \frac{|\delta \boldsymbol{x}(\tau)|}{|\delta \boldsymbol{x}(0)|} \quad \text{equivalent to} \quad \lambda = \frac{1}{\tau} \log \frac{|\nabla C(\tau)|}{|\nabla C(0)|}$

Lapeyre, Hua and Legras (2001) showed

 $\lambda \approx \frac{1}{\tau} \int_{Hyperbolic} Strain \ dt$

only during strain dominates following criterion by Lapeyre, Klein, Hua (1999)

Present issues

Ocean/atmosphere: quasi 2D / 3D

- vertical to horizontal aspect ratio of filaments
 - What is a 3D transport barrier in quasi-2D flows?

$$|\boldsymbol{x}_{1} - \boldsymbol{x}_{2}|^{2} = \delta x(t)^{2} + \delta y(t)^{2} + \delta z(t)^{2}$$

with $\frac{d\delta z}{dt} = \delta w(x(t), y(t), z(t))$
and $\frac{d\delta x}{dt} = \delta u(x, y, z = z_{0})\delta x + \frac{\partial u}{\partial z}\delta z$

vertical motions

vertical shears

Three-dimensions: example of ABC flow

Lyapunov exponent computed in 3D

Lyapunov exponent computed in 2D

For a purely 3D flow, large difference of FSLE

Example of a GCM (HYCOM)

For a GCM, still some differences due to the presence of vertical shear (Lipphard et al. 2014)

 \Rightarrow not obvious to define a quasi-2D barrier!

Active tracers

Active tracers

Active Tracers:

- advected by the flow
- retroact on dynamics

e.g

- Potential vorticity velocity and density linked to PV (through PV inversion)
- Temperature and salinity through density dynamics
- water vapor through condensation and latent heat release

Potential vorticity mixing

$$\underbrace{\frac{\partial^2 \psi}{\partial x^2} + \frac{\partial^2 \psi}{\partial y^2}}_{\text{relative vorticity}} + \underbrace{\frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2} \frac{\partial \psi}{\partial z} \right)}_{\text{vortex stretching}} = PV$$

with
$$u = -\frac{\partial \psi}{\partial y}$$
 $v = \frac{\partial \psi}{\partial x}$

Letting $\langle \rangle_x$ zonal average

$$\frac{\partial^2 \langle u \rangle_x}{\partial y^2} + \frac{\partial}{\partial z} \left(\frac{f_0^2}{N^2} \frac{\partial \langle u \rangle_x}{\partial z} \right) = -\frac{\partial \langle PV \rangle_x}{\partial y}$$

PV Mixing \Rightarrow PV gradient \Rightarrow zonal jets

Potential vorticity mixing (\beta-plane turbulence)

- PV homogenization and Strong PV gradients in between (PV staircases, McIntyre)
- zonal jets

Density fronts

frontogenesis = formation of horizontal density gradients

- Inked to stirring of density field by mesoscale eddies
- tends to destroy thermal wind balance
- development of an ageostrophic circulation (in particular, vertical velocities)
 - \Rightarrow reestablishing thermal wind

Restratification

surface vorticity

surface stratification N^2

- horizontal density gradients $\nabla_H \rho$
- high vorticities and vertical velocities
- restratification

Lapeyre, Hua, Klein, 2006

Final remarks

Cascade of tracers to small scales \Rightarrow tracer gradients

- Idea to study it in the physical space (not in the spectral space)
 - Diagnose transport barriers and effective mixing

New dynamical processes:

- Stirring of tracers at a typical scale
 - Nonlocal effect of large-scale eddies (e.g. QG turbulence)
 - Local Effect of eddies at same scale (e.g. SQG turbulence)
- Differences in stirring properties and dispersion?
- Difference in dynamics and cascade of active tracers?