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Mo9va9on:	  	  
How	  to	  diagnose	  the	  three-‐dimensional	  flux	  of	  wave	  energy?	  
	  
Ques9on	  1:	  
What	  is	  an	  appropriate	  9me	  interval	  for	  sampling?	  
10	  min?,	  1	  hour?,	  3	  hours?	  	  (related	  to	  disk	  size)	  
	  
Ques9on	  2:	  
What	  is	  an	  appropriate	  9me	  scale	  for	  a	  9me	  mean?	  
6	  hours?	  12	  hours?	  24	  hours?	  (related	  to	  the	  iner9al	  period)	  
	  
Strategy:	  
It	  would	  be	  nice	  if	  the	  energy	  flux	  is	  calculated	  without	  	  
sampling	  errors	  and	  also	  without	  using	  a	  9me	  mean	  



Let’s	  explain	  the	  situa9on	  in	  detail	  ….	  
	  

	  	  	  	  An	  on-‐line	  diagnosis	  /	  	  An	  off-‐line	  diagnosis	  



	  
	

OOnnlliinnee  ddiiaaggnnoossiiss  
CCoommppuuttee  wwaavvee--aavveerraaggeedd  qquuaannttiittiieess  iinnssiiddee  aa  mmooddeell  dduurriinngg  ttiimmee  iinntteeggrraattiioonn  
EExxaammppllee  ooff  mmooddeell  oouuttppuutt::  11--ddaayy  mmeeaann  ooff  pprreessssuurree  fflluuxx  
DDiissaaddvvaannttaaggee  
tthhee  lliisstt  ooff  wwaavvee--aavveerraaggeedd  qquuaannttiittiieess  nneeeeddss  ttoo  bbee  sseett  wwiitthh  aa  ggoooodd  ppllaann  
                                                                                                                                            ==>>  lliimmiittaattiioonn  ooff  ddiisskk  ssiizzee  
aa  ttiimmee  ssccaallee  ffoorr  aavveerraaggiinngg  nneeeeddss  ttoo  bbee  sseett  wwiitthh  aa  ggoooodd  ppllaann  
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Tradi9onal	  Energy	  Equa9on	  
	  
	

2. Wave energy equations

We consider small-amplitude wave motions in a continuously stratified fluid in a rotating frame.

Let Cartesian coordinates be written by the set of independent variables (x, y, z, t) where x and y are

the horizontal coordinates; z (the geopotential height) increases vertically upward; (u, v, w) are the

corresponding three-dimensional components of velocity. We use a low-pass temporal filter to decompose

an arbitrary quantity A into the mean and perturbation components: A = A+A′ where the overbar and

prime indicate the Eulerian time mean and the deviation from it, respectively.

a. Phase-dependent expression

The basic feature of IGWs can be described by the linearized Boussinesq, hydrostatic, and incompressible

equations,

u′
t − fv′ = −p′x, (1a) uvel

v′
t + fu′ = −p′y, (1b) vvel

ρ′
t + w′ρz = 0, (1c) dnst

p′ = gη′ + g

∫ 0

z

ρ′dz/ρ0, (1d) hpres

u′
x + v′

y + w′
z = 0, (1e) cont

where f is the Coriolis parameter, p is hydrostatic pressure divided by the reference density ρ0 of sea

water, and η is the sea surface height with g being the acceleration due to gravity. For convenience we

define

z′ ≡ −ρ′/ρz = (g/ρ0)ρ
′/N2, (2a) zdisp

4

where N ≡
√
−gρz/ρ0 is the buoyancy frequency and z′ = 0 should be understood. Then (1c) and (1d)

may be rewritten into,

z′t = w′, (2b) ztw

p′z = −(g/ρ0)ρ
′ = −N2z′, (2c) pz

respectively.

Manipulation of (1a)-(2c) yields an instantaneous conservation equation for the wave energy:

[(u′2 + v′2 + N2z′2)/2︸ ︷︷ ︸
E

]t + (u′p′)x + (v′p′)y + (w′p′)z = 0. (3) inst-wed

Application of a low-pass filter to (3) yields,

Et + (u′p′)x + (v′p′)y + (w′p′)z = 0, (4) energy

In the next sbsection we derive a phase-independent expression for the WED equation (3), which may

be used for the diagnosis of a model output when there is a limitation in terms of sampling.

b. Phase-independent expression

Taking the curl of (1a)-(1b) yields a vorticity equation (v′
x − u′

y)t − fw′
z = 0 which may be rewritten

using (2b) to read

v′
x − u′

y − fz′
z = 0, (5) vort

which indicates that IGWs are associated with no perturbation of Ertel’s potential vorticity (hereafter

EPV; Gill 1982; Müller, 1995). In order to develop an equation, which is a cornerstone for the present

study, we multiply (1a) with v′/(2f) and multiply (1b) with −u′/(2f), and then take the sum of the two
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where f = f0 +βy is the Coriolis parameter, p is hydrostatic pressure divided by the reference density ρ0

of sea water, and η is the sea surface height with g being the acceleration due to gravity. For convenience

We introduce an apparent displacement vector (x′, y′, z′) associated with the perturbation velocity,

(u′, v′, w′) = (x′
t, y

′
t, z

′
t), (2) md

which includes (3b), and 0 = x′ = y′ = z′ should be understood. Since the perturbation velocity

(u′, v′, w′) satisfy a no-normal-flow condtion at the solid boundaries, the displacement vector (x′, y′, z′)

4

Governing	  Equa9ons	  for	  IGW	



A. Analytical solution for IGWs

An analytical solution for the equation system (1a)-(1e) is written by,

p′ = A cos θ, θ = kx + ly + mz − σt, (18a) an-p

u′ = (p′σk + p′θfl)/(σ2 − f 2), (18b) an-u

v′ = (−p′θfk + p′σl)/(σ2 − f 2), (18c) an-v

w′ = −p′σm/N2, (18d) an-w

z′ = −p′θm/N2, (18e) an-z

where A is the wave amplitude, θ is the wave phase, (k.l) and m are the wavenumber in the horizontal

and vertical directions, respectively, with σ being the wave frequency (e.g. Phillips, 1977; Gill, 1984),

that satisfy a dispersion relation,

k2 + l2

σ2 − f2
=

m2

N2
. (19) dispersion

Note that all of A, (k, l,m), and σ contain slow variations, which is a basis for partial differentiations for

the low-pass filtered quantities in (4). Substitution of the analytical solution (18a)-(18e) to the low-pass

filtered WED and the low-pass filtered pressure flux in (4) yields,

E = [(p′2σ2 + p′θ
2f 2)(k2 + l2)/(σ2 − f2)2 + p′θ

2m2/N2]/2

= [(p′2σ2 + p′θ
2f 2) + p′θ

2(σ2 − f2)]m2/[2N2(σ2 − f 2)]

= p′2σ2m2/[N2(σ2 − f2)], (20a) t-pf

u′p′ = p′2σk/(σ2 − f2), (20b) u-pf

v′p′ = p′2σl/(σ2 − f2), (20c) v-pf

w′p′ = p′2σm/N2, (20d) w-pf

where p′p′θ = 0 and p′2 = p′θ
2 have been used.
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E = [(p′2σ2 + p′θ
2f 2)(k2 + l2)/(σ2 − f2)2 + p′θ

2m2/N2]/2

= [(p′2σ2 + p′θ
2f 2) + p′θ

2(σ2 − f2)]m2/[2N2(σ2 − f 2)]

= p′2σ2m2/[N2(σ2 − f2)], (20a) t-pf

u′p′ = p′2σk/(σ2 − f2), (20b) u-pf

v′p′ = p′2σl/(σ2 − f2), (20c) v-pf

w′p′ = p′2σm/N2, (20d) w-pf

where p′p′θ = 0 and p′2 = p′θ
2 have been used.
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2. Wave energy equations

We consider small-amplitude wave motions in a continuously stratified fluid in a rotating frame.

Let Cartesian coordinates be written by the set of independent variables (x, y, z, t) where x and y are

the horizontal coordinates; z (the geopotential height) increases vertically upward; (u, v, w) are the

corresponding three-dimensional components of velocity. We use a low-pass temporal filter to decompose

an arbitrary quantity A into the mean and perturbation components: A = A+A′ where the overbar and

prime indicate the Eulerian time mean and the deviation from it, respectively.

a. Phase-dependent expression

The basic feature of IGWs can be described by the linearized Boussinesq, hydrostatic, and incompressible

equations,

u′
t − fv′ = −p′x, (1a) uvel

v′
t + fu′ = −p′y, (1b) vvel

ρ′
t + w′ρz = 0, (1c) dnst

p′ = gη′ + g

∫ 0

z

ρ′dz/ρ0, (1d) hpres

u′
x + v′

y + w′
z = 0, (1e) cont

where f is the Coriolis parameter, p is hydrostatic pressure divided by the reference density ρ0 of sea

water, and η is the sea surface height with g being the acceleration due to gravity. For convenience we

define

z′ ≡ −ρ′/ρz = (g/ρ0)ρ
′/N2, (2a) zdisp

4

where N ≡
√
−gρz/ρ0 is the buoyancy frequency and z′ = 0 should be understood. Then (1c) and (1d)

may be rewritten into,

z′t = w′, (2b) ztw

p′z = −(g/ρ0)ρ
′ = −N2z′, (2c) pz

respectively.

Manipulation of (1a)-(2c) yields an instantaneous conservation equation for the wave energy:

[(u′2 + v′2 + N2z′2)/2︸ ︷︷ ︸
E

]t + (u′p′)x + (v′p′)y + (w′p′)z = 0. (3) inst-wed

Application of a low-pass filter to (3) yields,

Et + (u′p′)x + (v′p′)y + (w′p′)z = 0, (4) energy

In the next sbsection we derive a phase-independent expression for the WED equation (3), which may

be used for the diagnosis of a model output when there is a limitation in terms of sampling.

b. Phase-independent expression

Taking the curl of (1a)-(1b) yields a vorticity equation (v′
x − u′

y)t − fw′
z = 0 which may be rewritten

using (2b) to read

v′
x − u′

y − fz′
z = 0, (5) vort

which indicates that IGWs are associated with no perturbation of Ertel’s potential vorticity (hereafter

EPV; Gill 1982; Müller, 1995). In order to develop an equation, which is a cornerstone for the present

study, we multiply (1a) with v′/(2f) and multiply (1b) with −u′/(2f), and then take the sum of the two
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t − fv′ = −p′x, (1a) uvel

v′
t + fu′ = −p′y, (1b) vvel

ρ′
t + w′ρz = 0, (1c) dnst

p′ = gη′ + g

∫ 0

z

ρ′dz/ρ0, (1d) hpres

u′
x + v′

y + w′
z = 0, (1e) cont

where f = f0 +βy is the Coriolis parameter, p is hydrostatic pressure divided by the reference density ρ0

of sea water, and η is the sea surface height with g being the acceleration due to gravity. For convenience

We introduce an apparent displacement vector (x′, y′, z′) associated with the perturbation velocity,

(u′, v′, w′) = (x′
t, y

′
t, z

′
t), (2) md

which includes (3b), and 0 = x′ = y′ = z′ should be understood. Since the perturbation velocity

(u′, v′, w′) satisfy a no-normal-flow condtion at the solid boundaries, the displacement vector (x′, y′, z′)

4

Governing	  Equa9ons	  for	  IGW	

equations to yield,

(u′
tv

′ − u′v′
t)/(2f) − (u′2 + v′2)/2 = (u′p′y − v′p′x)/(2f)

= −[v′p′/(2f)]x + [u′p′/(2f)]y + (v′
x − u′

y)p
′/2f

= −[v′p′/(2f)]x + [u′p′/(2f)]y + z′zp
′/2

= −[v′p′/(2f)]x + [u′p′/(2f)]y + (z′p′/2)z + N2z′2/2, (6) eqv-wed0

where the third line has been derived using (5), and the last line has been derived using (2c). With (6)

in mind, we rewrite the instantaneous WED equation (4) as,

Et = −(u′p′)x − (v′p′)y − (w′p′)z

= [(p′y + v′
t)p

′/f ]x − [(p′x + u′
t)p

′/f ]y − [w′p′]z

= [v′
tp

′/f ]x − [u′
tp

′/f ]y − [z′tp
′]z, (7) inst-wed2

where the second line has been derived using (1a)-(1b). Summation of (7) and the time derivative of (6)

yields

[(u′
tv

′ − u′v′
t)/(2f)]t + [−(v′

tp
′ − v′p′t)/(2f)]x + [(u′

tp
′ − u′p′t)/(2f)]y + [(z′

tp
′ − z′p′t)/2]z = 0, (8) eqv-wed1

which represents an instantaneous conservation equation for the quantity (u′
tv

′−u′v′
t)/(2f), and has been

little mentioned in previous studies.

We assume that, for an arbiturary perturbation quantity,

(A′
t, A

′
x, A

′
y) = (−σA′

θ, kA′
θ, lA

′
θ), A′

θθ = −A′ (9) solf

where subscripts indicate partial differentiations, σ is wave frequency, (k, l) the horizontal wavenumber,

and θ is the wave phase. A general proof without using the analytical solution follows. Let A′ =

Ac cos θ+As sin θ and B′ = Bc cos θ+Bs sin θ be arbitrary monochromatic wave quantities (Ac, As, Bc, Bs

6
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On the other hand, substitution of the analytical solution (18a)-(18e) to the phase-independent WED

in (8) and its three-dimensional flux yields,

(u′
tv

′ − u′v′
t)/(2f) = (p′2 + p′θ

2)σ2(k2 + l2)/[2(σ2 − f2)2]

= (p′2 + p′θ
2)σ2/[2N2(σ2 − f2)], (21a) t-pf-pi

−(v′
tp

′ − v′p′t)/(2f) = (p′2 + p′θ
2)σk/(2σ2 − 2f 2), (21b) u-pf-pi

(u′
tp

′ − u′p′t)/(2f) = (p′2 + p′θ
2)σl/(2σ2 − 2f 2), (21c) v-pf-pi

(z′tp
′ − z′p′t)/2 = (p′2 + p′θ

2)σm/(2N2), (21d) w-pf-pi

each of which averages to the correspoding quantity in (20a)-(20d), understanding that p′2 + p′θ
2 = 2p′2,

B. Scaling the waves and the mean flow
s:scl

The equation system (1a)-(1e) assumes that the mean flow is not too strong. Such scaling may

be explained by introducing nondimensional parameters, α, β, γ defined as follows with ||A|| indicating

scaling for an arbitrary quantity A.

• α ≡ ||z′m|| which is the ratio between the vertical displacement ||z′||, defined at (2b), and the

vertical wave length ||m−1|| where the symbol of ||A|| represents scaling for an arbitrary quantity

A. (When referring to the wavelength, we assume that the factor of 2π is included in the scaling

symbol for simplicity). The present study assumes α ≪ 1. The parameter α is also the ratio

between the magnitude of the horizontal component of the perturbation velocity ||u′|| and the

horizontal phase/group speed c ≡ ||σ/k|| ∼ ||∂σ/∂k|| of the waves2.

• β ≡ ||u||/||u′|| which is the ratio between the strength of the mean velocity and the perturbation

2The present study focuses on the range of the wave frequency σ which is (greater than but) on the same order of
magnitude as the inertial frequency f , with a consequence that the dispersion relation (19) being scaled as c ≡ ||σ/k|| ∼
||N/m||. Referencing the form of the analytical solution (18a)-(18e), we rewrite α ≡ ||z′m|| as α ∼ ||p′||m2/N2 ∼
||p′||k2/σ2 ∼ (||p′k/σ||)/c ∼ ||u′||/c.
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A. Analytical solution for IGWs

An analytical solution for the equation system (1a)-(1e) is written by,

p′ = A cos θ, θ = kx + ly + mz − σt, (18a) an-p

u′ = (p′σk + p′θfl)/(σ2 − f 2), (18b) an-u

v′ = (−p′θfk + p′σl)/(σ2 − f 2), (18c) an-v

w′ = −p′σm/N2, (18d) an-w

z′ = −p′θm/N2, (18e) an-z

where A is the wave amplitude, θ is the wave phase, (k.l) and m are the wavenumber in the horizontal

and vertical directions, respectively, with σ being the wave frequency (e.g. Phillips, 1977; Gill, 1984),

that satisfy a dispersion relation,

k2 + l2

σ2 − f2
=

m2

N2
. (19) dispersion

Note that all of A, (k, l,m), and σ contain slow variations, which is a basis for partial differentiations for

the low-pass filtered quantities in (4). Substitution of the analytical solution (18a)-(18e) to the low-pass

filtered WED and the low-pass filtered pressure flux in (4) yields,

E = [(p′2σ2 + p′θ
2f 2)(k2 + l2)/(σ2 − f2)2 + p′θ

2m2/N2]/2

= [(p′2σ2 + p′θ
2f 2) + p′θ

2(σ2 − f2)]m2/[2N2(σ2 − f 2)]

= p′2σ2m2/[N2(σ2 − f2)], (20a) t-pf

u′p′ = p′2σk/(σ2 − f2), (20b) u-pf

v′p′ = p′2σl/(σ2 − f2), (20c) v-pf

w′p′ = p′2σm/N2, (20d) w-pf

where p′p′θ = 0 and p′2 = p′θ
2 have been used.
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Figure 1: Schematic of the model domain.

Figure 2: Instantaneous distributions of the vertical displacement z′ = −ρ′/ρz at t = 8.5 day in (a) the horizontal plane
at z = −2000 m and (b) the vertical plane at y = 0 m.
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2. Wave energy equations

We consider small-amplitude wave motions in a continuously stratified fluid in a rotating frame.

Let Cartesian coordinates be written by the set of independent variables (x, y, z, t) where x and y are

the horizontal coordinates; z (the geopotential height) increases vertically upward; (u, v, w) are the

corresponding three-dimensional components of velocity. We use a low-pass temporal filter to decompose

an arbitrary quantity A into the mean and perturbation components: A = A+A′ where the overbar and

prime indicate the Eulerian time mean and the deviation from it, respectively.

a. Phase-dependent expression

The basic feature of IGWs can be described by the linearized Boussinesq, hydrostatic, and incompressible

equations,

u′
t − fv′ = −p′x, (1a) uvel
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where f is the Coriolis parameter, p is hydrostatic pressure divided by the reference density ρ0 of sea

water, and η is the sea surface height with g being the acceleration due to gravity. For convenience we

define

z′ ≡ −ρ′/ρz = (g/ρ0)ρ
′/N2, (2a) zdisp
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Figure 4: Same as Figure 3 except for vertical distributions at y = 0km.
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Figure 3: Horizontal distributions (at z = −2000m) of the x-component of the energy flux, being estimated as (a) u′p′, (b)
(v′

tp
′−v′p′t)/(2f), (c) u′p′, and (c) (v′tp′ − v′p′t)/(2f) at t = 8.5 day. While (a) and (b) represent instantaneous distributions,

(c) and (d) represent distributions which have been time-averaged for 24 hours using a series of 3-hour snapshots.
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Figure 5: Vertical distributions (at y = 0km) of the z-component of the energy flux, being estimated as (a) w′p′, (b)
(z′tp′ − w′p′t)/2, (c) w′p′, and (c) (z′tp′ − w′p′t)/2 at t = 8.5 day. While (a) and (b) represent instantaneous distributions,
(c) and (d) represent distributions which have been time-averaged for 24 hours using a series of 3-hour snapshots.
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where N ≡
√
−gρz/ρ0 is the buoyancy frequency and z′ = 0 should be understood. Then (1c) and (1d)

may be rewritten into,

z′t = w′, (2b) ztw

p′z = −(g/ρ0)ρ
′ = −N2z′, (2c) pz

respectively.

Manipulation of (1a)-(2c) yields an instantaneous conservation equation for the wave energy:

[(u′2 + v′2 + N2z′2)/2︸ ︷︷ ︸
E

]t + (u′p′)x + (v′p′)y + (w′p′)z = 0. (3) inst-wed

Application of a low-pass filter to (3) yields,

Et + (u′p′)x + (v′p′)y + (w′p′)z = 0, (4) energy

In the next sbsection we derive a phase-independent expression for the WED equation (3), which may

be used for the diagnosis of a model output when there is a limitation in terms of sampling.

b. Phase-independent expression

Taking the curl of (1a)-(1b) yields a vorticity equation (v′
x − u′

y)t − fw′
z = 0 which may be rewritten

using (2b) to read

v′
x − u′

y − fz′
z = 0, (5) vort

which indicates that IGWs are associated with no perturbation of Ertel’s potential vorticity (hereafter

EPV; Gill 1982; Müller, 1995). In order to develop an equation, which is a cornerstone for the present

study, we multiply (1a) with v′/(2f) and multiply (1b) with −u′/(2f), and then take the sum of the two

5

equations to yield,

(u′
tv

′ − u′v′
t)/(2f) − (u′2 + v′2)/2 = (u′p′y − v′p′x)/(2f)

= −[v′p′/(2f)]x + [u′p′/(2f)]y + (v′
x − u′

y)p
′/2f

= −[v′p′/(2f)]x + [u′p′/(2f)]y + z′zp
′/2

= −[v′p′/(2f)]x + [u′p′/(2f)]y + (z′p′/2)z + N2z′2/2, (6) eqv-wed0

where the third line has been derived using (5), and the last line has been derived using (2c). With (6)

in mind, we rewrite the instantaneous WED equation (4) as,

Et = −(u′p′)x − (v′p′)y − (w′p′)z
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t)p

′/f ]y − [w′p′]z
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tp

′/f ]x − [u′
tp

′/f ]y − [z′tp
′]z, (7) inst-wed2

where the second line has been derived using (1a)-(1b). Summation of (7) and the time derivative of (6)

yields

[(u′
tv

′ − u′v′
t)/(2f)]t + [−(v′

tp
′ − v′p′t)/(2f)]x + [(u′

tp
′ − u′p′t)/(2f)]y + [(z′

tp
′ − z′p′t)/2]z = 0, (8) eqv-wed1

which represents an instantaneous conservation equation for the quantity (u′
tv

′−u′v′
t)/(2f), and has been

little mentioned in previous studies.

We assume that, for an arbiturary perturbation quantity,

(A′
t, A

′
x, A

′
y) = (−σA′

θ, kA′
θ, lA

′
θ), A′

θθ = −A′ (9) solf

where subscripts indicate partial differentiations, σ is wave frequency, (k, l) the horizontal wavenumber,

and θ is the wave phase. A general proof without using the analytical solution follows. Let A′ =

Ac cos θ+As sin θ and B′ = Bc cos θ+Bs sin θ be arbitrary monochromatic wave quantities (Ac, As, Bc, Bs
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5. Summary

In the atmospheric literature, a phase-independent expression for the quasi-geostrophic wave-activity

flux associated with Rossby waves has been widely used as a model diagnostic (Takaya and Naka-

mura, 1997, 2001). Here, under the assumption of monochromatic waves. we have presented a phase-

independent expression for both the wave-energy lux associated with inertial gravity waves (IGWs). The

idea is that the use of a phase-independent expression enables the calculation of the phase-averaged flux

of energy even if a temporally sparse (and spatially dense) model output is used. The phase-averaged

energy flux can be calculated from basic quantities in a single snapshot and does not require time averag-

ing. The technique is illustrated using three-dimensional model solutions for the passage of a storm over

an ocean that is initially at rest. In this case, the waves are not monochromatic but, rather, represent a

complete spectrum of waves that are generated by the storm. It is clear that model diagnostics are not,

in this case, guaranteed to be phase invariant, as is evident when they are applied to the model output.

Nevertheless, the new diagnostics give a clearer picture of the energy flux than is apparent using the

traditional approach.
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A. Pseudomomentum equations

(E/c)t + (u′p′/c)x + (v′p′/c)y + (w′p′/c)z = 0 (20)

where c = σ/k is the phase speed. A′ ∝ cosθ where θ = kx − σt then A′
t/c = −kA′

θ = −A′
x

(E/c)t + (E − v′v′)x + (v′u′)y + (z′p′x)z ≃ 0 (21)
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idea is that the use of a phase-independent expression enables the calculation of the phase-averaged flux

of energy even if a temporally sparse (and spatially dense) model output is used. The phase-averaged

energy flux can be calculated from basic quantities in a single snapshot and does not require time averag-

ing. The technique is illustrated using three-dimensional model solutions for the passage of a storm over

an ocean that is initially at rest. In this case, the waves are not monochromatic but, rather, represent a

complete spectrum of waves that are generated by the storm. It is clear that model diagnostics are not,

in this case, guaranteed to be phase invariant, as is evident when they are applied to the model output.

Nevertheless, the new diagnostics give a clearer picture of the energy flux than is apparent using the
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(E/c)t + (u′p′/c)x + (v′p′/c)y + (w′p′/c)z = 0 (20)

where c = σ/k is the phase speed. A′ ∝ cosθ where θ = kx − σt then A′
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x

(E/c)t + (E − v′v′)x + (v′u′)y + (z′p′x)z ≃ 0 (21)
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where N ≡
√
−gρz/ρ0 is the buoyancy frequency and z′ = 0 should be understood. Then (1c) and (1d)

may be rewritten into,

z′t = w′, (2b) ztw

p′z = −(g/ρ0)ρ
′ = −N2z′, (2c) pz

respectively.

Manipulation of (1a)-(2c) yields an instantaneous conservation equation for the wave energy:

[(u′2 + v′2 + N2z′2)/2︸ ︷︷ ︸
E

]t + (u′p′)x + (v′p′)y + (w′p′)z = 0. (3) inst-wed

Application of a low-pass filter to (3) yields,

Et + (u′p′)x + (v′p′)y + (w′p′)z = 0, (4) energy

In the next sbsection we derive a phase-independent expression for the WED equation (3), which may

be used for the diagnosis of a model output when there is a limitation in terms of sampling.

b. Phase-independent expression

Taking the curl of (1a)-(1b) yields a vorticity equation (v′
x − u′

y)t − fw′
z = 0 which may be rewritten

using (2b) to read

v′
x − u′

y − fz′
z = 0, (5) vort

which indicates that IGWs are associated with no perturbation of Ertel’s potential vorticity (hereafter

EPV; Gill 1982; Müller, 1995). In order to develop an equation, which is a cornerstone for the present

study, we multiply (1a) with v′/(2f) and multiply (1b) with −u′/(2f), and then take the sum of the two
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equations to yield,

(u′
tv

′ − u′v′
t)/(2f) − (u′2 + v′2)/2 = (u′p′y − v′p′x)/(2f)

= −[v′p′/(2f)]x + [u′p′/(2f)]y + (v′
x − u′

y)p
′/2f

= −[v′p′/(2f)]x + [u′p′/(2f)]y + z′zp
′/2

= −[v′p′/(2f)]x + [u′p′/(2f)]y + (z′p′/2)z + N2z′2/2, (6) eqv-wed0

where the third line has been derived using (5), and the last line has been derived using (2c). With (6)

in mind, we rewrite the instantaneous WED equation (4) as,

Et = −(u′p′)x − (v′p′)y − (w′p′)z

= [(p′y + v′
t)p

′/f ]x − [(p′x + u′
t)p

′/f ]y − [w′p′]z

= [v′
tp

′/f ]x − [u′
tp

′/f ]y − [z′tp
′]z, (7) inst-wed2

where the second line has been derived using (1a)-(1b). Summation of (7) and the time derivative of (6)

yields

[(u′
tv

′ − u′v′
t)/(2f)]t + [−(v′

tp
′ − v′p′t)/(2f)]x + [(u′

tp
′ − u′p′t)/(2f)]y + [(z′

tp
′ − z′p′t)/2]z = 0, (8) eqv-wed1

which represents an instantaneous conservation equation for the quantity (u′
tv

′−u′v′
t)/(2f), and has been

little mentioned in previous studies.

We assume that, for an arbiturary perturbation quantity,

(A′
t, A

′
x, A

′
y) = (−σA′

θ, kA′
θ, lA

′
θ), A′

θθ = −A′ (9) solf

where subscripts indicate partial differentiations, σ is wave frequency, (k, l) the horizontal wavenumber,

and θ is the wave phase. A general proof without using the analytical solution follows. Let A′ =

Ac cos θ+As sin θ and B′ = Bc cos θ+Bs sin θ be arbitrary monochromatic wave quantities (Ac, As, Bc, Bs
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	[−(u′

xv
′ − u′v′

x)/(2f)]t + [(v′
xp

′ − v′p′x)/(2f)]x + [−(u′
xp

′ − u′p′x)/(2f)]y + [−(z′xp
′ − z′p′x)/(2f)]z ≃ 0 (22)

Nori: I would leave out this stuff. Perhaps in an appendix. But to be honest, it is not

cllear to me what use the pseudomomentum is. Nothing is gained by using this material

but much is lost - we no longer have a clear message.

In general the phase velocity, the group velocity, and the energy flux of linear plane waves may be

written by,

(Cpx, Cpy, Cpz) ≡ (σ/k,σ/l,σ/m), (23a) cp

(Cgx, Cgy, Cgz) ≡ (∂σ/∂k, ∂σ/∂l, ∂σ/∂m), (23b) cg

(u′p′, v′p′, w′p′) = (CgxE,CgyE,CgzE), (23c) cge

where E ≡ (u′2+v′2+N2z′2)/2 is the WED in (3). Equation (23c) is specialized to IGWs in that the group

velocity of IGWs is in the direction of the pressure flux (it does not hold for Rossby waves). The pseu-

domomentum in the classical linear wave theory is defined by the wave energy divided by the (intrinsic)

phase velocity of the waves, and is hereafter referred to as the energy-based (EB) pseudomomentum1.

Substitution of (k/σ)∂t = −k∂θ = −∂x to (16a)-(16d) yields, a phase-independent expression for the

x-component of the EB pseudomomentum and its three-dimensional flux,

E/Cpx = −(u′
xv

′ − u′v′
x)/(2f), (24a) t-pfx

u′p′/Cpx = (v′
xp

′ − v′p′x)/(2f), (24b) u-pfx

v′p′/Cpx = −(u′
xp

′ − u′p′x)/(2f), (24c) v-pfx

w′p′/Cpx = −(z′xp
′ − z′p′x)/2. (24d) w-pfx

1The EB pseudomomentum should be distinguished from another type of pseudomomentum used in the classical liter-
ature, which may be referred to as the vorticity-based pseudomomentum, an issue to be explored in our future study in
the context of a unified framework for waves in a planetary fluid.
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