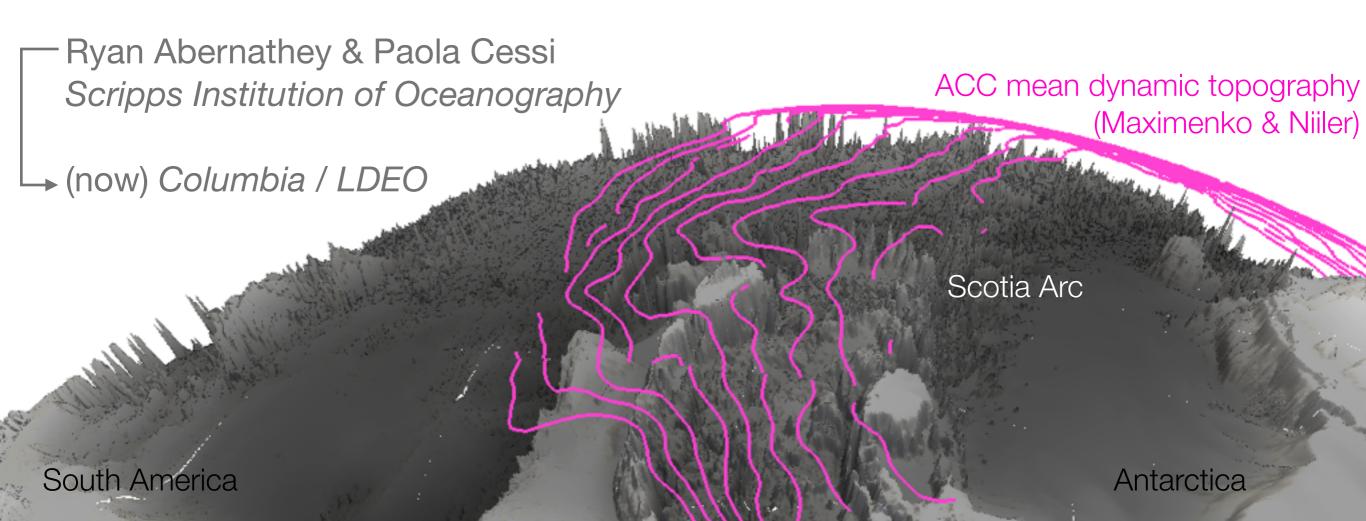
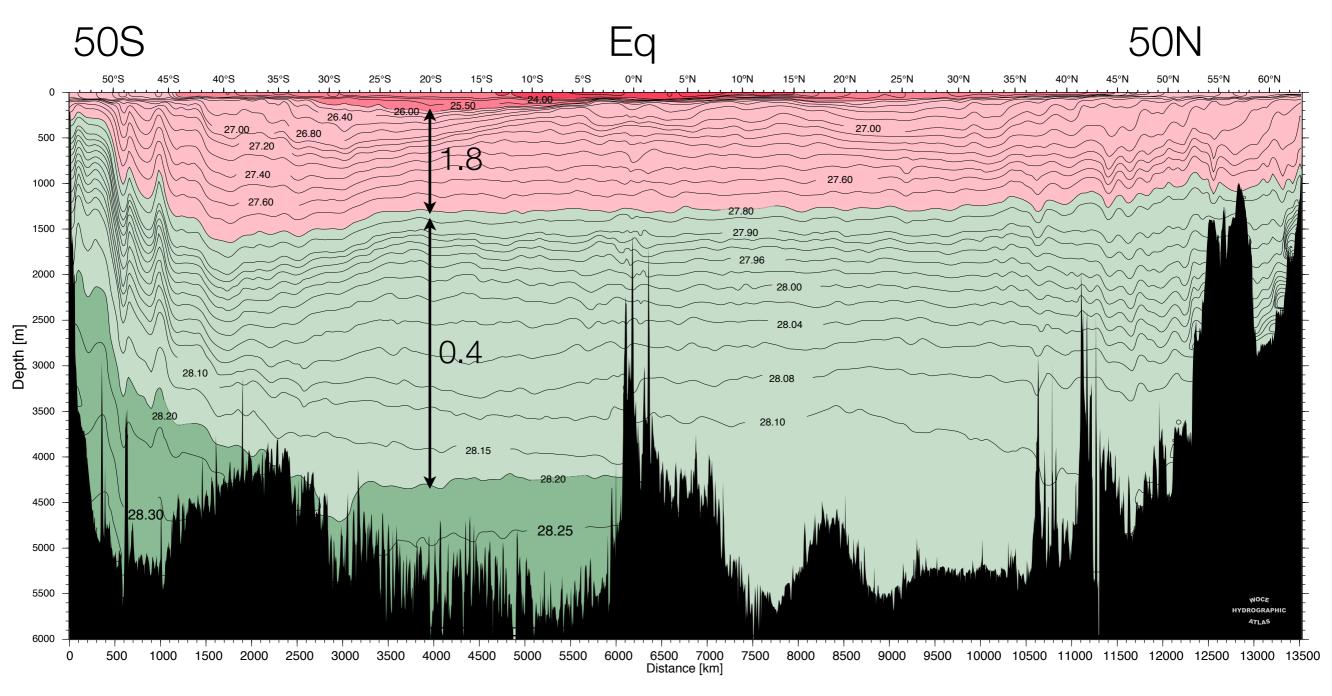
Topographic Enhancement of Eddy Efficiency in Baroclinic Equilibration



Outline

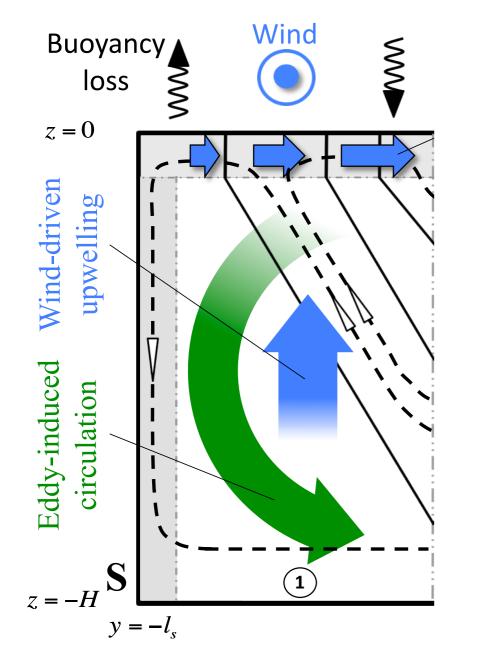
- Introduction to stratification problem and baroclinic equilibration
- Description of numerical experiments
- Standing vs. transient eddies
- Analytical QG model with standing / transient eddy interaction
- Cross-stream eddy fluxes

Global Density Stratification



Atlantic Neutral Density (WOCE A16)

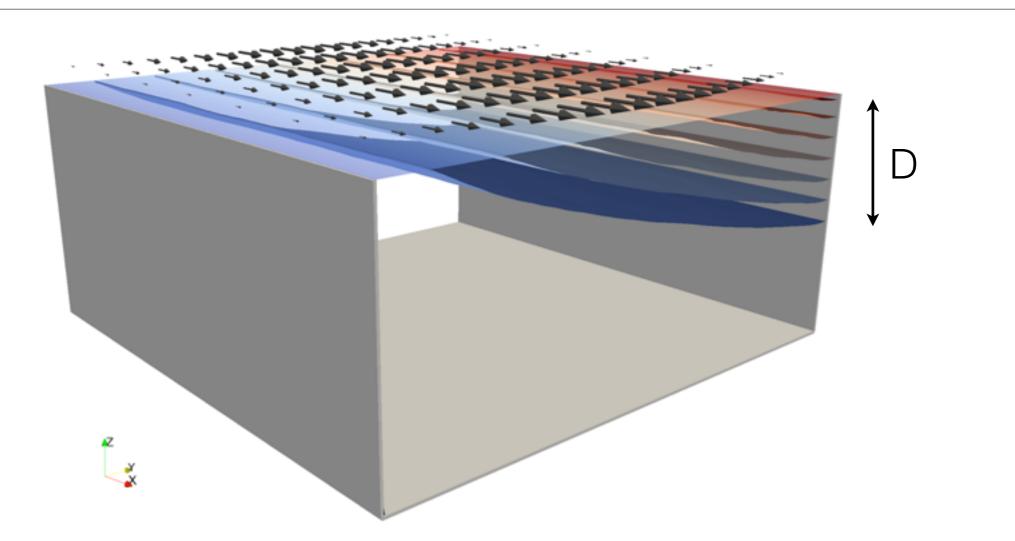
Global Density Stratification - Theoretical Models



- Southern Ocean is unique in its ability to generate deep stratification (due to lack of meridional boundaries)
- The S.O. deep stratification permeates the global ocean below the thermocline
- The S.O. stratification is set by a balance between wind-driven upwelling and eddy-induced restratification

figure from Nikurashin & Vallis (2012) also Gnanadesikan (2007), Wolfe & Cessi (2010

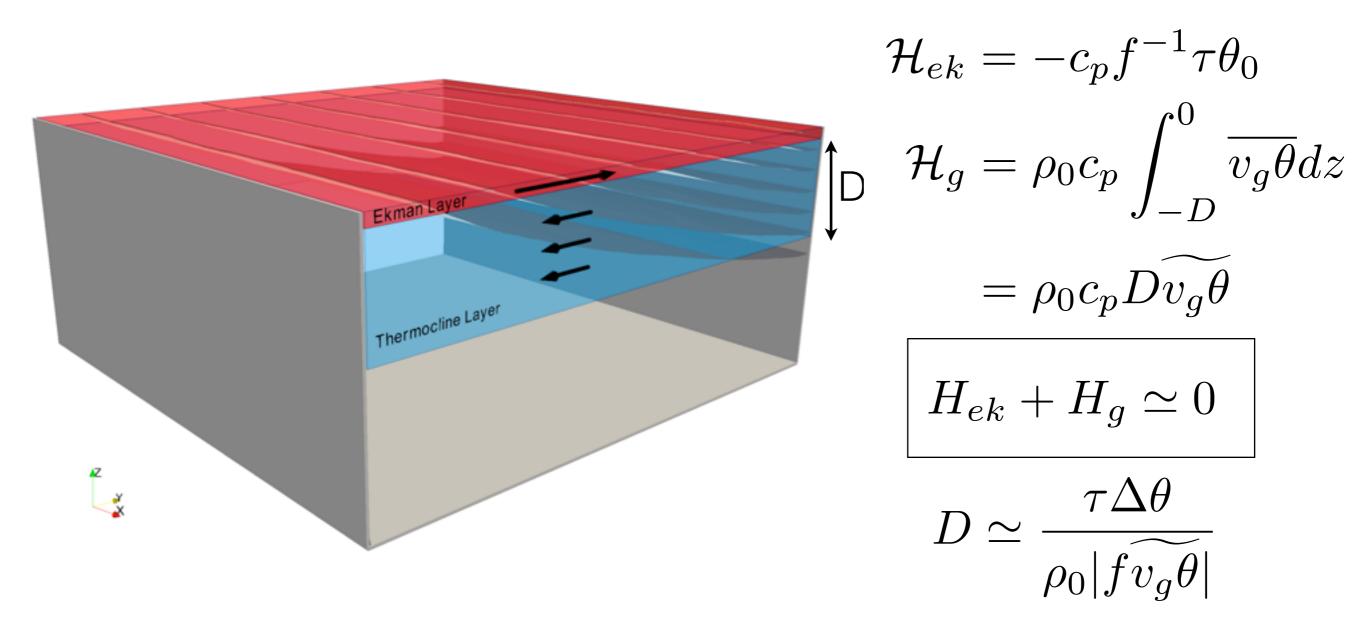
Idealized Problem: ACC-Like Channel



- Forced at surface with wind stress & relaxation to prescribed temperature
- Very weak interior diapycnal mixing
- Surface temperature is practically fixed, interior adjusts to wind forcing
- Very small surface buoyancy flux

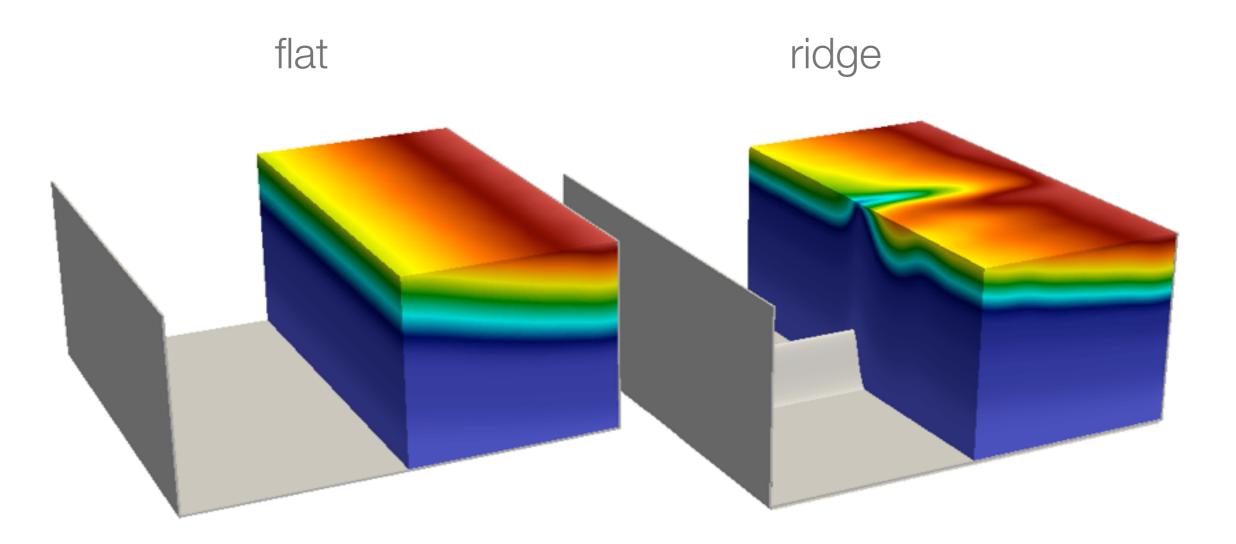
Equilibration of Circumpolar Currents: Meridional Heat Transport Perspective

With walls and quasi-adiabatic dynamics: no net HT



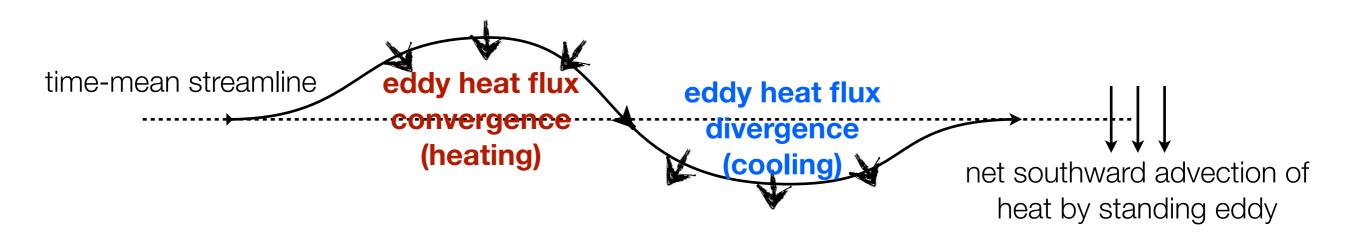
The balance between Ekman and geostrophic HT determines D

Numerical Experiments

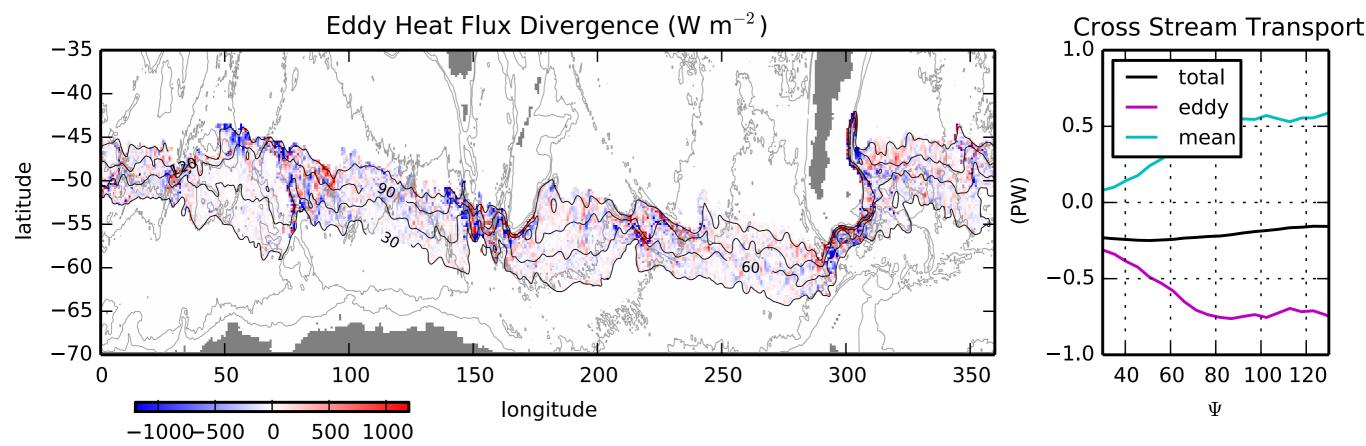


- MITgam, 5km resolution, 40 vertical levels, adiabatic interior, temperature particles $\langle v\theta \rangle = \langle v \rangle \langle \theta \rangle + \langle v \theta \rangle + \langle v \theta \rangle$
- 2000 km x 2000 km x 3000m, Gaussian ridge 1000 m high, 200 km wide $\theta' = \theta \theta$
- Forced with sinusoidal wind jet, surface buoyancy restoring to linear gradient

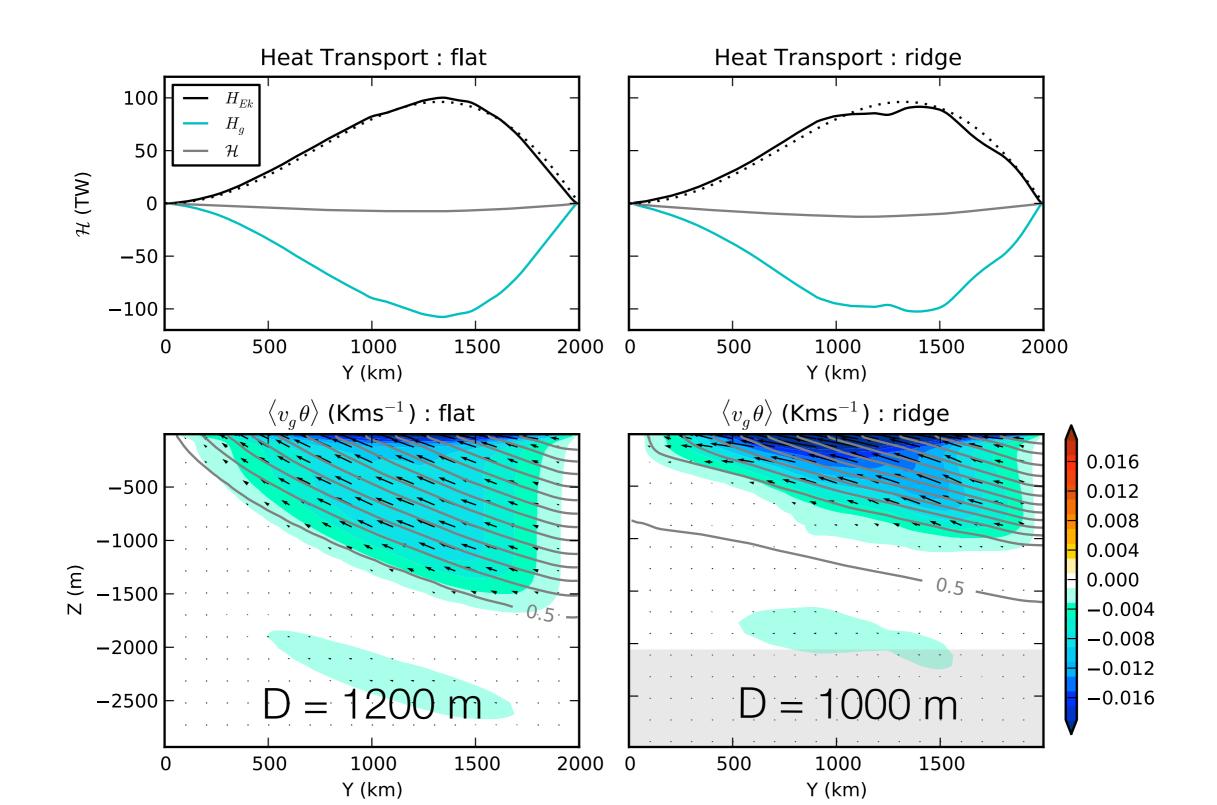
Standing and Transient Eddies



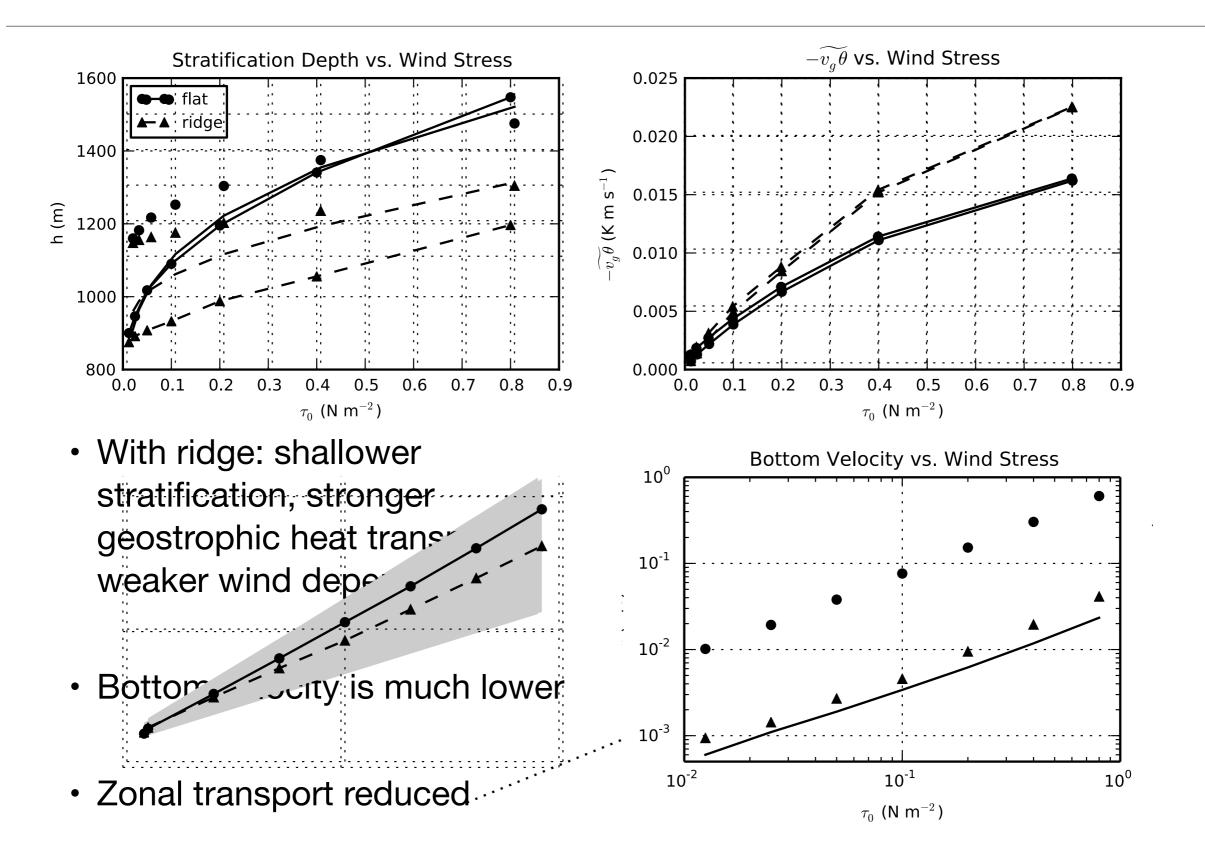
Southen Ocean State Estimate (SOSE): 1/6 deg. "eddy permitting" model



Stratification: with and without the ridge



Sensitivity to Winds



Two-Layer QG Model forced by wind w/ bottom drag qgpv: $\partial_t q_n + J(\psi_n, q_n) = -\frac{\tau_y}{H_1} \delta_{n,1} - \frac{\tau_b}{H_2} \nabla^2 \psi_2 \delta_{n,2}$ $q_1 = \nabla^2 \psi_1 + \beta y + F_1(\psi_2 - \psi_1)$ $q_2 = \nabla^2 \psi_2 + \beta y + F_2(\psi_1 - \psi_2) + \frac{f_0 h_b}{H_2}$ zonal mean + standing + transient $\psi_n = \langle \psi_n \rangle(y) + \psi_n^{\dagger}(x,y) + \psi_n'(x,y,t)$ $q_n = \langle q_n \rangle(y) + q_n^{\dagger}(x, y) + q_n'(x, y, t)$ Assume very slow variation in y $U_{1}q_{1x}^{\dagger} + (\beta - F_{1}U_{2} + F_{1}U_{1} - U_{1yy})\psi_{1x}^{\dagger} + J(\psi_{1}^{\dagger}, q_{1}^{\dagger}) - \langle \psi_{1x}^{\dagger}q_{1}^{\dagger} \rangle_{y} + \overline{J(\psi_{1}', q_{1}')} - \langle \overline{\psi_{1x}'q_{1}'} \rangle_{y} = 0$ $U_{2}q_{2x}^{\dagger} + (\beta - F_{2}U_{1} + F_{2}U_{2} - U_{2yy})\psi_{2x}^{\dagger} + J(\psi_{2}^{\dagger}, q_{2}^{\dagger}) - \langle \psi_{2x}^{\dagger}q_{2}^{\dagger} \rangle_{y} + \overline{J(\psi_{2}', q_{2}')} - \langle \overline{\psi_{2x}'q_{2}'} \rangle_{y} = -r_{b}\nabla^{2}\psi_{2}^{\dagger}/H_{2}$

The nonlinear terms drop out to leading order, the wave depends on y parametrically

Standing wave forced by ridge

Use transient eddy closure:
$$\overline{J(\psi_{1,2}', q_{1,2}')} = -K\nabla^2 \overline{q}_{1,2}$$
$$U_1 \psi_{1xx}^{\dagger} + (\beta - F_1 U_2) \psi_1^{\dagger} + F_1 U_1 \psi_2^{\dagger} = Kq_{1x}^{\dagger}$$
$$U_2 \psi_{2xx}^{\dagger} + (\beta - F_2 U_1) \psi_2^{\dagger} + F_2 U_2 \psi_1^{\dagger} + U_2 f_0 \frac{h_b}{H_2} = Kq_{2x}^{\dagger} - r\psi_{2x}^{\dagger}$$

Approximation: ridge scale larger than deformation radius: ∂_{xx} , $\beta/U_i \ll F_i$ 1st order, equivalent barotropic: $U_2\psi_1^{\dagger} \approx U_1\psi_2^{\dagger}$

next order:
$$\left(1 + \frac{H_1 U_1^2}{H_2 U_2^2}\right) \psi_{2xx}^{\dagger} + \frac{\beta}{U_2} \left(1 + \frac{H_1 U_1}{H_2 U_2}\right) \psi_2^{\dagger} + \frac{r}{U_2} \psi_{2x}^{\dagger} = -f_0 \frac{h_b}{H_2}$$

A damped wave with wavelength: $\sqrt{U_1/\beta}$

Nonlinear equilibration

 U_1 and U_2 determined by zonally averaged dynamics

The zonally averaged PV equations are:

$$\langle \psi_{1x}^{\dagger} q_1^{\dagger} \rangle + \langle \overline{\psi_{1x}' q_1'} \rangle = -\frac{\tau}{\rho_0 H_1}$$
$$\langle \psi_{2x}^{\dagger} q_2^{\dagger} \rangle + \langle \overline{\psi_{2x}' q_2'} \rangle = \frac{r_b U_2}{H_2}$$

Rewritten as:

$$f_0 \langle \psi_2^\dagger h_{bx} \rangle = \frac{\tau}{\rho_0} - r_b U_2$$

Momentum balance

$$F_1 \langle \psi_1^{\dagger} \psi_{2x}^{\dagger} \rangle + K F_1 (U_1 - U_2) = \frac{\tau}{\rho_0 H_1} \quad \text{Heat balance}$$

 $\langle \psi_1^\dagger \psi_{2x}^\dagger \rangle$ is due to the correction to the equiv. barotr. mode and we get:

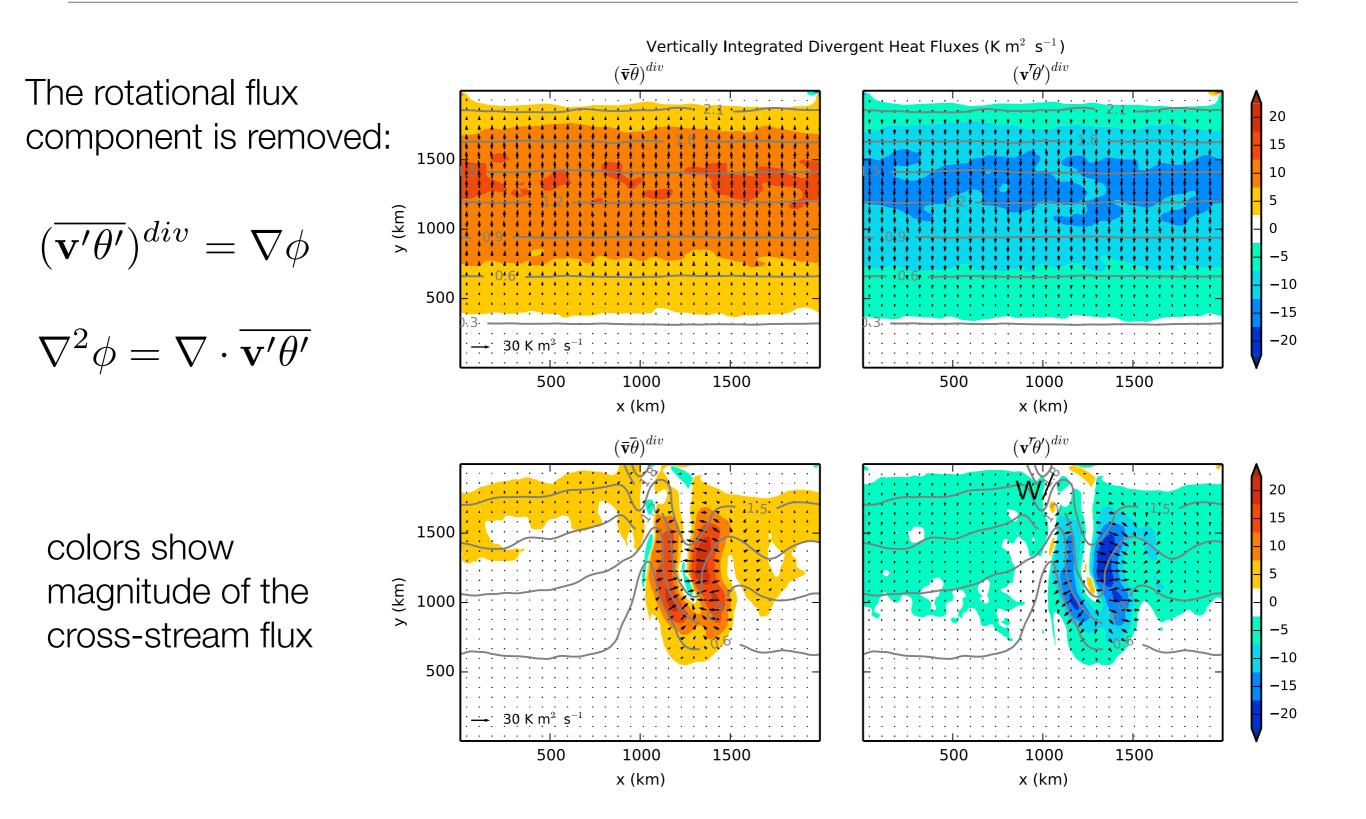
$$KF_1(U_1 - U_2) \left(1 + \frac{\langle \psi_{2x}^{\dagger 2} \rangle}{U_2^2} \right) = \frac{\tau}{\rho_0 H_1}.$$

Heat balance

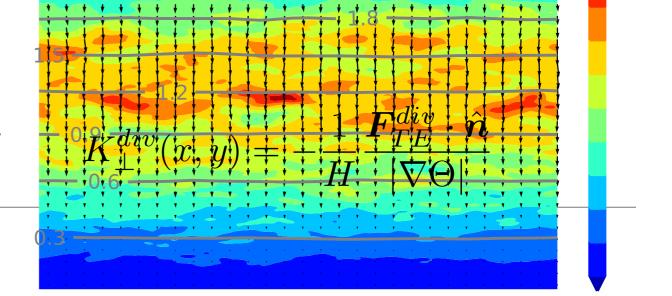
Standing wave increases eddy diff.by increasing $|\nabla T|$ and the isotherms arclength

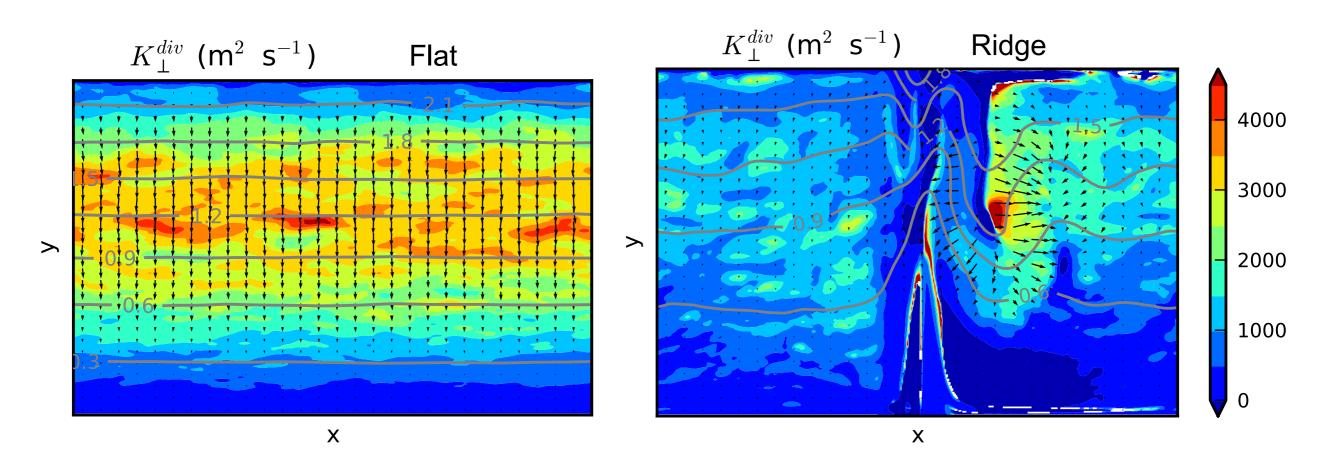
The boxed constraints determine U_1 and U_2

Cross-Stream Heat Transport



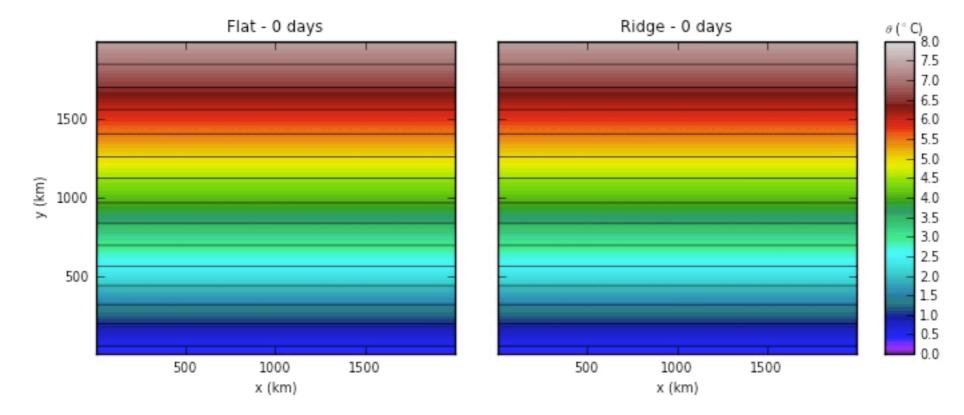
Transient Eddy Diffusivity





Eddy fluxes are downgradient
Eddy fluxes are suppressed away from the ridge
Max, flux is not in the same location as max. gradient

Two Paradigms of Baroclinic Instability



- Global/convective instability: Eady (1949); Phillips (1951)...;
- Growth rates depend on shear and N², weakly on U.
- Modes propagate in space
- Bottom zonal flow is fast (only bottom drag)

- Absolute / local instability: Merkine (1977); Pierrehumbert (1984)
- Local instability depends on local shear, N² and strongly on U.
- Modes grow in place, localized
- Bottom zonal flow is weak (topographic form-stress)

Conclusions

- The depth of the stratification depends on the efficiency of eddies at transporting heat poleward: more efficient eddies give a shallower thermocline.
- Eddies are more efficient with a ridge: their "diffusivity" is augmented by standing waves by increasing temp. gradients and arclength (explained by QG model).
- The ridge reduces mean zonal flow (esp. bottom flow), and locally increases baroclinicity: *absolute* instability is favored and is more efficient than *global*. Topography provides an organizing center for eddy fluxes
- Ridge provides a feedback which reduces *h* and mean flow, enhancing eddy growth and heat flux.

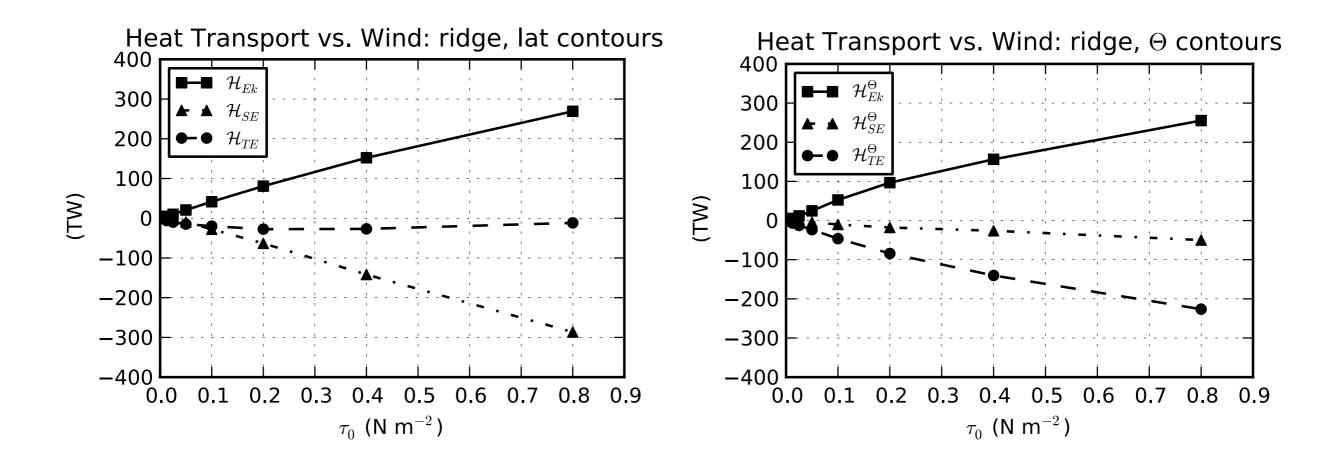
$$F_{\rm Ek} = -\int_{\gamma} cf^{-1}(\theta_{sfc} - \theta_0) r^{(s)} ds,$$

$$F_{\rm BC} = \int_{\gamma} dF_{\rm BC}(s),$$

$$F_{\rm BT} = \iint_{\gamma} c\rho v_{g0}(\bar{\theta} - \theta_0) dA,$$

$$F_{\rm BC} + F_{\rm BT} + F_{\rm Ek} + F_{\rm E} + F_{\gamma} = Q$$

estimate: 0 0 -15 45 0 +30error: $\pm 23 \pm 10 \pm 30$? units: 10^{13} W



$heta^{\dagger}$

(1) temperature equation:

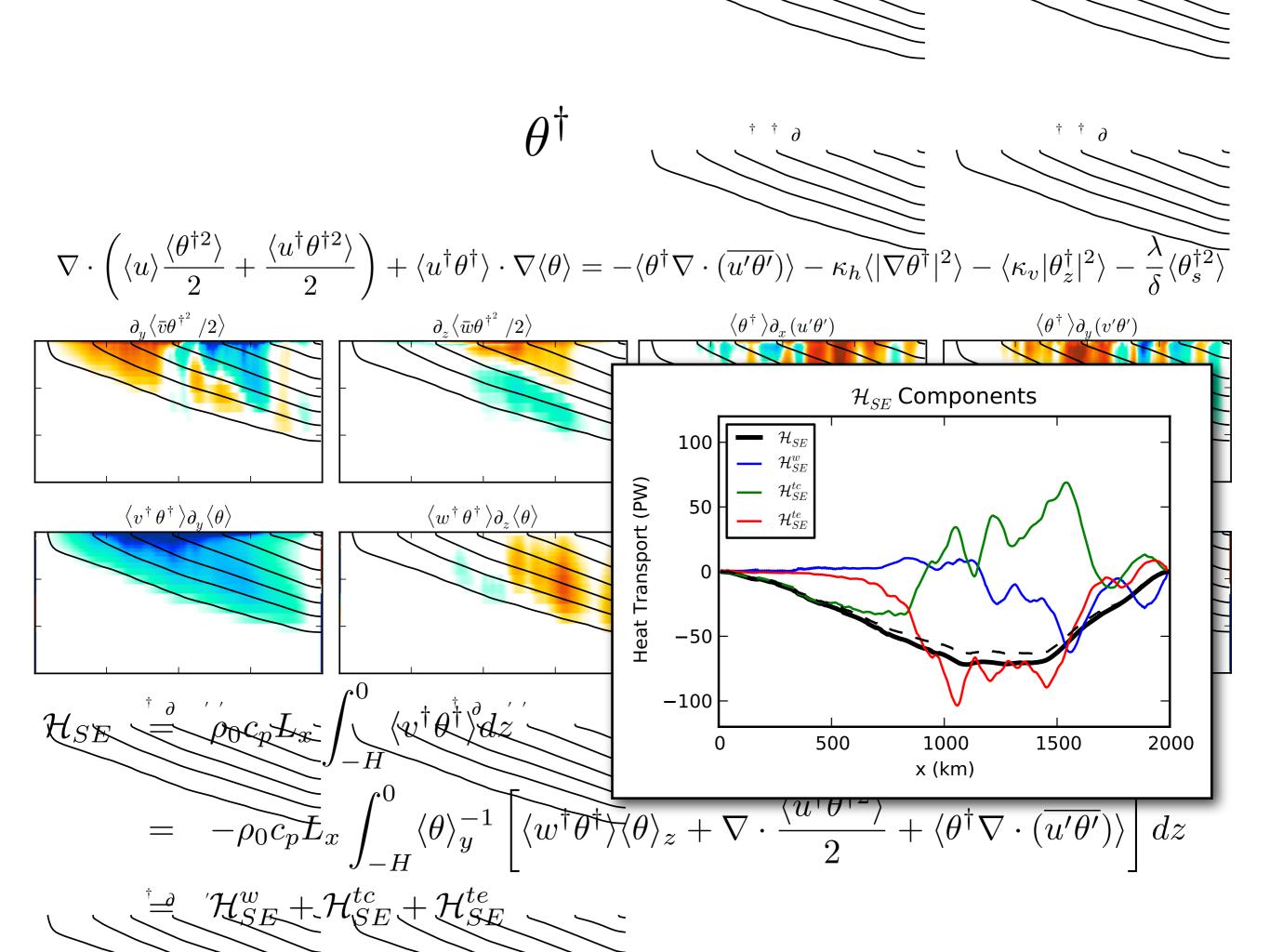
$$\theta_t + u \cdot \nabla \theta = \kappa_h \nabla_h^2 \theta + (\kappa_v \theta_z)_z - \frac{\lambda}{\delta} (\theta_s - \theta^*)$$

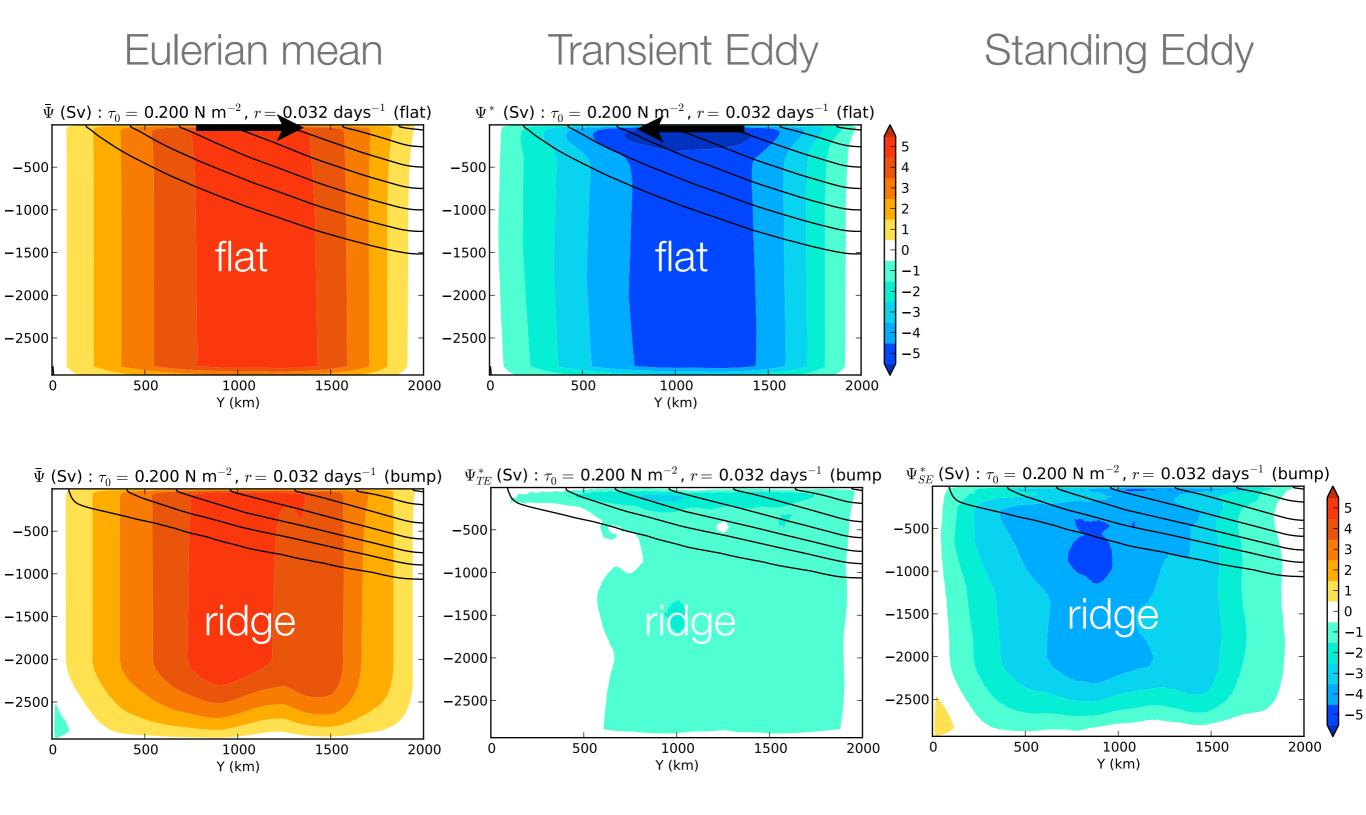
$$\langle\theta\rangle_t + \langle u\rangle \cdot \nabla\langle\theta\rangle + \nabla \cdot \langle u^{\dagger}\theta^{\dagger}\rangle + \nabla \cdot \langle \overline{u'\theta'}\rangle = \kappa_h \nabla_h^2 \langle\theta\rangle + (\langle\kappa_v \theta_z\rangle)_z - \frac{\lambda}{\delta} (\langle\theta\rangle_0 - \theta^*)$$

Subtract (2) from (1), multiply by θ^{\dagger} , take another zonal / time average

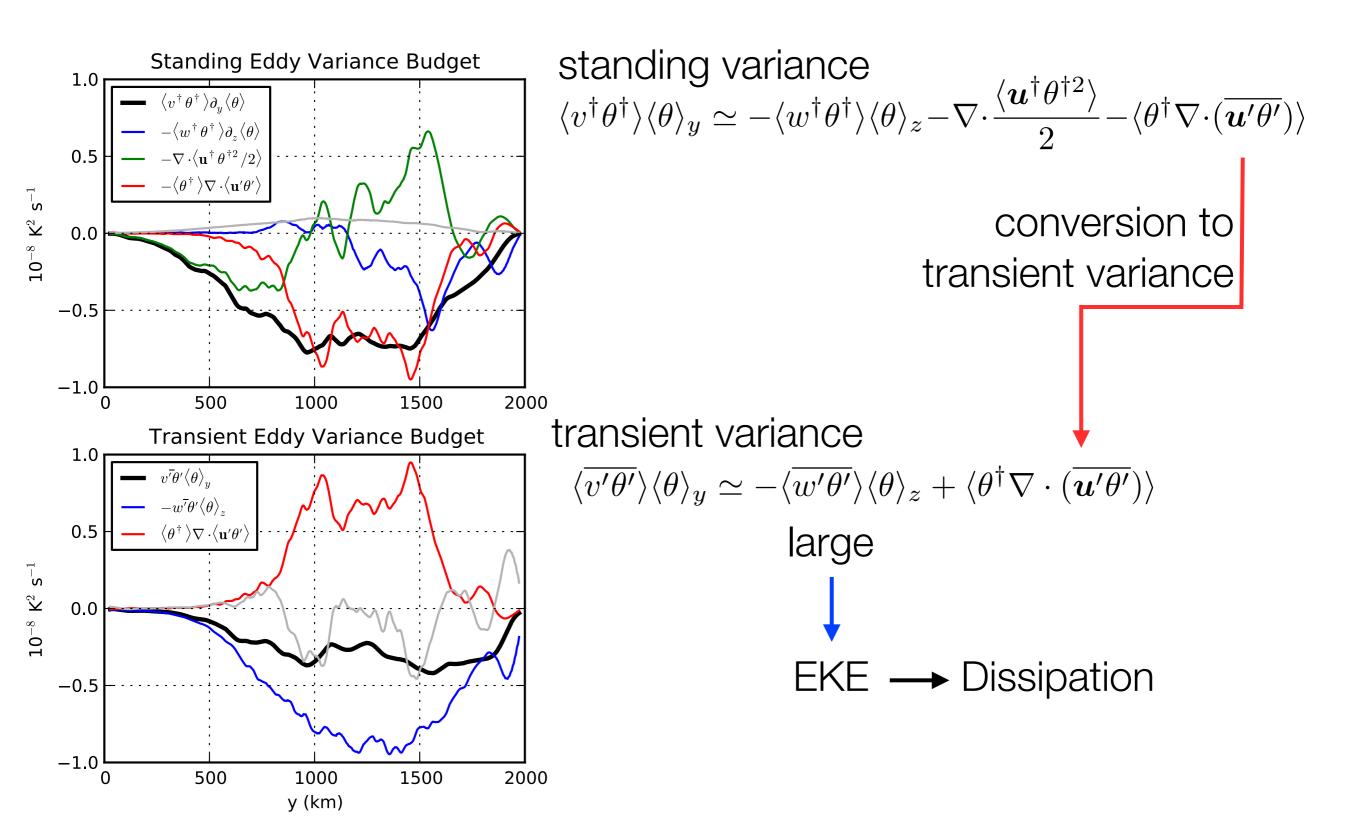
(3) standing wave variance equation

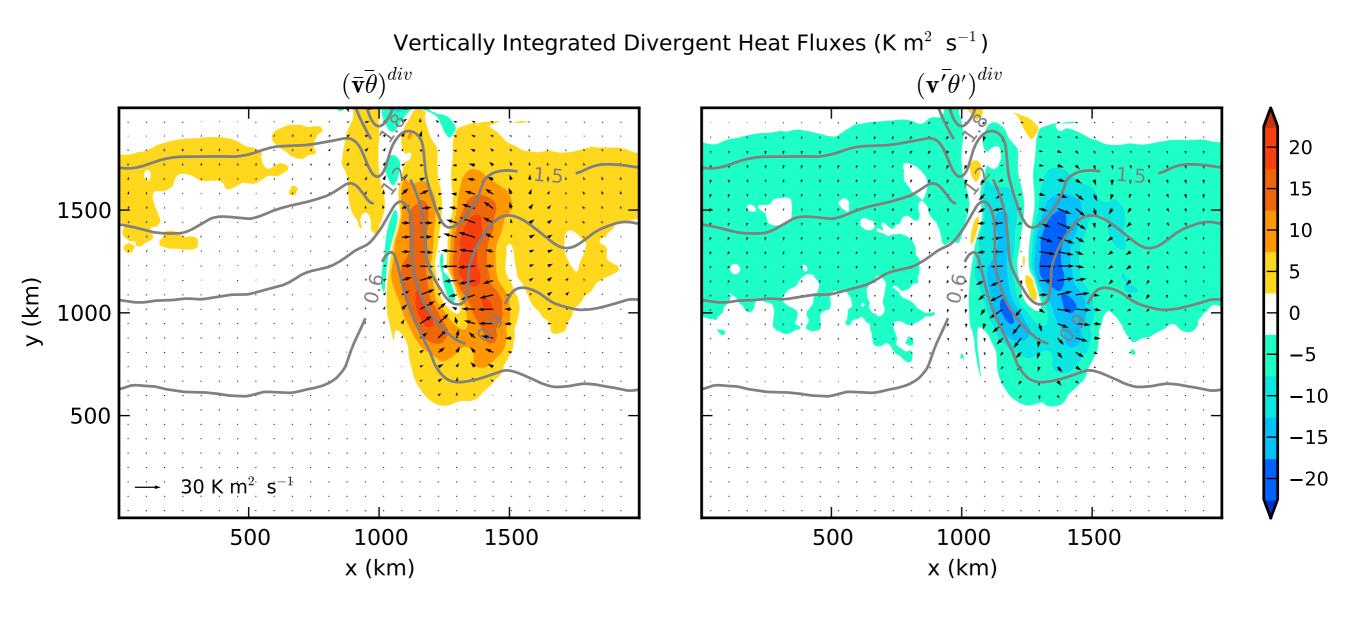
$$\nabla \cdot \left(\langle u \rangle \frac{\langle \theta^{\dagger 2} \rangle}{2} + \frac{\langle u^{\dagger} \theta^{\dagger 2} \rangle}{2} \right) + \langle u^{\dagger} \theta^{\dagger} \rangle \cdot \nabla \langle \theta \rangle = -\langle \theta^{\dagger} \nabla \cdot (\overline{u' \theta'}) \rangle - \kappa_h \langle |\nabla \theta^{\dagger}|^2 \rangle - \langle \kappa_v |\theta_z^{\dagger}|^2 \rangle - \frac{\lambda}{\delta} \langle \theta_s^{\dagger 2} \rangle$$

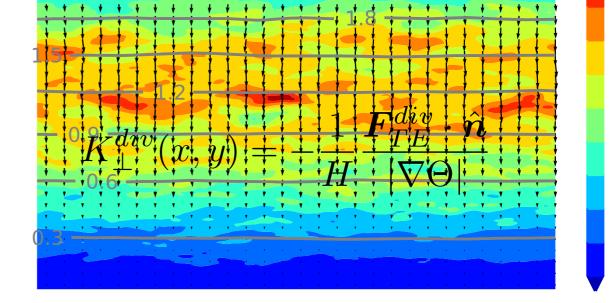


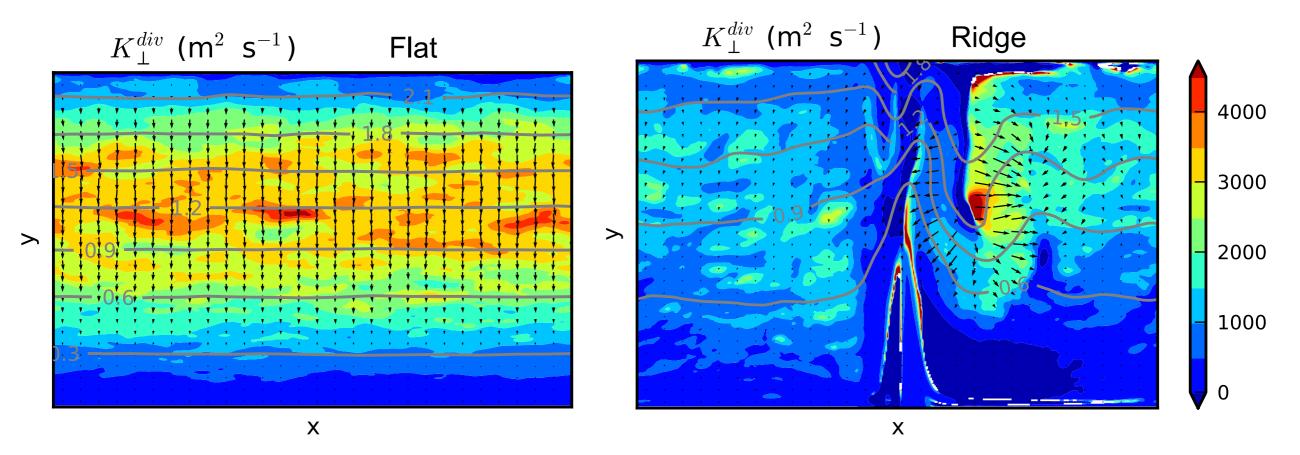


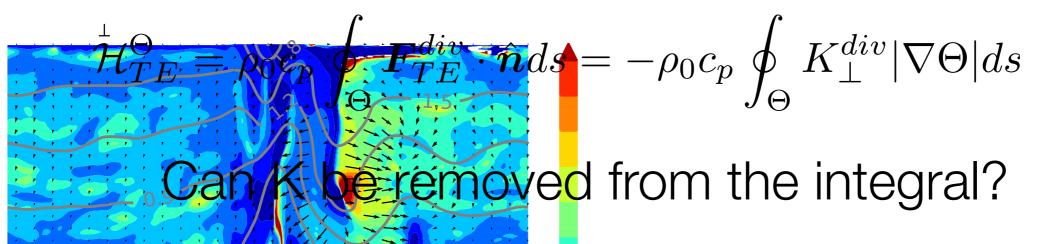
$heta^{\dagger}$











Many model studies have investigated the response of the Southern Ocean to changing wind stress:

- COARSE resolution models show strong sensitivity to the winds
- EDDY RESOLVING / PERMITTING models are much less sensitive

→ eddies compensate for circulation changes due to winds

Found in everything from two-layer QG models up to coupled climate models

GFDL Model: Triple Strength Winds CM2.1 SHW3X COALSE **B** 0 500 27 2 1000 1500 27.6 2000 -60 -50 -40 см2.4 shw3x eddies (D) 0 500 1000 1500 2000 -60 -40 -50 Latitude Farneti et al. 2010