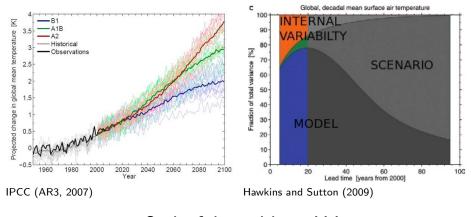
On the predictability of the North Atl ocean state

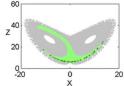
```
Florian Sévellec<sup>(1)</sup> and Alexey V. Fedorov<sup>(2)</sup>
```


 Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton
 (2) Department of Geology and Geophysics, Yale University

> Ocean Scale Interactions A Tribute to Bach-Lien Hua June 2014

Southampton

Which climate for the next decades?


\Rightarrow Study of the models sensitivity (error bar due to initial condition)

Predictability of the North Atl. ocean state

Conclusion

Societal demand for "near-term" climate prediction

- Response:
 - Decadal projections are included in CMIP5 (IPCC, AR5)
- Difficulty:
 - Sensitivity to initial conditions or error growth due to the chaotic behavior of the climate (T. Palmer: www2.physics.ox.ac.uk)

Current issues:

- The state of the climate in 2035?
- ► Is it possible to make predictions? ⇒ predictability study

\Rightarrow Can we quantify uncertainties?

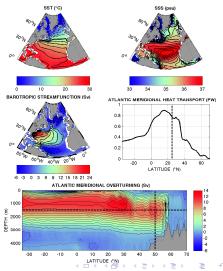
- Current "shortcoming":
 - Role of the Ocean (vs Atmosphere)?
 - \Rightarrow Impact Oceanic initial error on the North Atl. Climate?

Ensemble runs and General Stability Analysis

To test the importance of initial condition two methods exist:

- Pragmatic: Ensemble runs with randomly chosen set of initial conditions.
 - + Straigthforward to apply (largely used in CMIP5).
 - Could underestimate the uncertainty due to i.c.
- <u>Exact:</u> Generalized Stability Analysis (GSA identifies the most sensitive i.c.).
 - + Identify the bound of the uncertainty due to i.c. and so the predictability.
 - Less straigthforward to apply, only few groups in the world use this method (especially in oceanography).
 - Linear framework.

GSA ref: Farrell and Ioannou (1996I,II), Tziperman and Ioannou (2002)


・ 同 ト ・ ヨ ト ・ ヨ ト

Ocean General Circulation Model: NEMO-OPA

- OPA 8.2: primitive equation model (Madec et al., 1997; ESOPA team)
- ORCA2: global configuration (Madec and Imbard, 1996)
- Resolution: 2° with 31 vertical levels
- OPATAM: linear and adjoint model (Weaver et al., 2003)

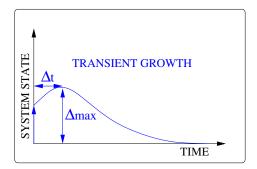
Linear Model BC:

- MBC, Flux Boundary Condition (Heat flux & Freshwater flux)
- FBC, Mixed Boundary Condition (Restoring SST & Freshwater flux)
- Max AMOC = 13 Sv (50°N, 1000 m)
- Max MHT = 0.75 PW (25°N)
- ⇒ One of the models used in IPCC (AR5) Climate projection

Predictability of the North Atl. ocean state

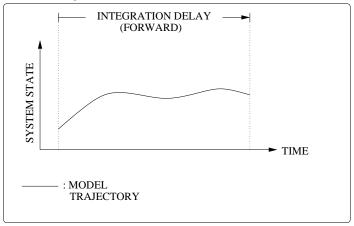
OSI conference - June 2014

Measuring the North Atl. Climate


We choose two typical metrics:

- The intensity of the Meridional Volume Transport (MVT): ⟨F|U⟩=∫⁰_{Z_{max(MVT)}} ∫^{x_E}_{x_W} v|_{y_{max(MVT)}} dxdz,
 2. The Oceanic Heat Content (OHC):
 - $\langle \mathbf{F} | \mathbf{U} \rangle = \frac{1}{V_{\mathrm{NA}}} \iiint_{\mathrm{NA}} T \, dv.$

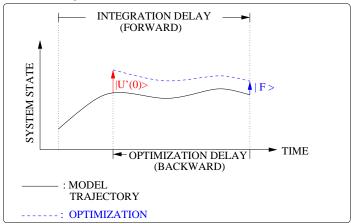
<u>Comments</u>: These two Climate metrics depend of time, to simplify the problem, we study only: t=December 31^{st} .


Optimal initial perturbation of the North Atl. Climate

"What perturbation to the initial condition (temporal Dirac) leads to the maximum change of the AMOC?"

What is the most efficient structure (\uparrow) and delay (Δt), which lead to the maximum change ($\Delta \max$)?

Step of the study


Predictability of the North Atl. ocean state

OSI conference - June 2014

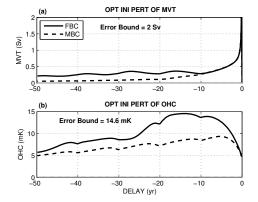
医下子 医下

< A ▶

Step of the study

Optimization using Lagrange multipliers:

 \Rightarrow Explicit Solution = fct($\mathbf{M}^{\dagger}_{\mathbf{v}}, \mathcal{T}_{opt}$)

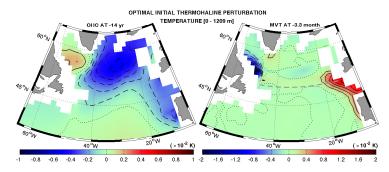

Predictability of the North Atl. ocean state

- MVT is most sensitive to "present" anomalies (\(\tau_{opt}=0\) yr)
- ► OHC is most sensitive to "delayed" anomalies (\u03c6_{opt}\u222214 yr)

Error of 1 mK on initial condition leads to

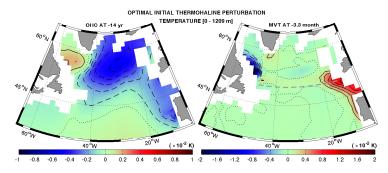
- 118% of relative error on MVT
- 31% of relative error on OHC
 (= Error Bound / std(MVT) from IPSL model)

Relatively insensitive to BC (MBC~FBC)


 \Rightarrow Predictability depends on the way one measures the system

- Why does some Climate metrics are the most sensitive to past disturbances?
- 2. Whereas others are the most sensitive to present disturbances?

 \Rightarrow What is the spatial shape of the Linear Optimal Perturbations?


The spatial scale of the most efficient disturbance seems crucial...

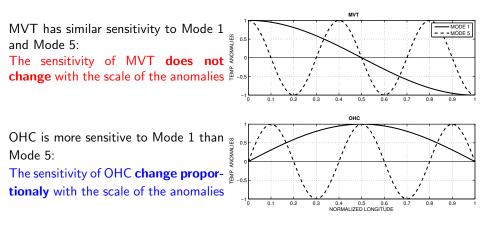
MVT instantaneous sensitivivity is associated to small scale

OHC delayed sensitivity is associated to large scale

The spatial scale of the most efficient disturbance seems crucial...

MVT instantaneous sensitivivity is associated to small scale

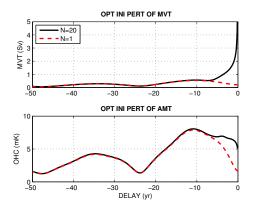
OHC delayed sensitivity is associated to large scale


 \Rightarrow Let's investigate further with a spectral idealized model!

A spectral idealized model: setting

- Advection-diffusion of T & S + Geostrophic balance
- Decomposition on zonal mode (Fourier series) (Sévellec and Fedorov, J. Clim. 2013)

A spectral idealized model: metric sensitivities


OSI conference - June 2014

A spectral idealized model: results

Roughly speaking:

- MVT $\propto \partial_x T$
- OHC $\propto \int T dx$

So that MVT is a lot more sensitive to smaller scale than OHC, and transient growth are proportional to the scale.

 \Rightarrow MVT optimal transient growth \rightarrow 0 (when $N \rightarrow \infty$).

OSI conference - June 2014

Conclusion ► Results:

- Predictability depends on the metric: MVT ≠ OHC.
 - \Rightarrow Initial error of 1 mK leads \sim std(IPSL).
 - MVT seems unpredictable
 - OHC has a predictability barrier at \sim 14 yr
- Climatically relevant metrics have higher predictability.
- We need accurate measurement in deep ocean to increase predictability!
- Future work:
 - Role of the mean state (Alexey V. Fedorov & Les Muir)
 - Role of the turbulence (Simon Müller et al, Meso-Clip)
 - Role of the nonlinearity (Victor Estella Perez)
 - Role of the coupling (Agathe Germe et al)

A (a) > (b)

Conclusion ► Results:

- Predictability depends on the metric: MVT ≠ OHC.
 - \Rightarrow Initial error of 1 mK leads \sim std(IPSL).
 - MVT seems unpredictable
 - OHC has a predictability barrier at \sim 14 yr
- Climatically relevant metrics have higher predictability.
- We need accurate measurement in deep ocean to increase predictability!
- Future work:
 - Role of the mean state (Alexey V. Fedorov & Les Muir)
 - Role of the turbulence (Simon Müller et al, Meso-Clip)
 - Role of the nonlinearity (Victor Estella Perez)
 - Role of the coupling (Agathe Germe et al)

Thank you for your attention!

