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Dissipation rate versus Reynolds   

Kaneda et al., 2003 
Phys. Fluids, 12, 21-24	
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Both laboratory experiments and 
numerical experiments of turbulent flows 

show that the dissipation rate   
   becomes independent of the fluid viscosity       



What is the inviscid limit of Navier-Stokes? 
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The Reynolds number Re = ULν-1 appears when  
non dimensional quantities are introduced. 

Navier-Stokes 
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 Euler’s  
solutions 

Navier-Stokes equations with 
no-slip boundary conditions: 

Euler equations with slip b.c.: 
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Well posedness of Navier-Stokes and Euler 
•  In 2D open space (without wall),  

–  for smooth initial data, Euler and Navier-Stokes equations  
    are well posed (long time existence and uniqueness), 
–  the Navier-Stokes equation is well posed in L2 (energy norm), 
–  the Euler equation is well posed for bounded vorticity,   
–  for Euler equation, many open questions for cases with 

unbounded vorticity. 

•  In 3D open space (without wall),  
–  for smooth initial data, both problems are well posed,  
    at least for a short time,  
–  the Navier-Stokes equation admits a weak solution for all time, 

but uniqueness is an open question, 
–  for Euler equation even existence is an issue for long times. 

•   In 2D and 3D confined space (with walls), 
  the problem is still fully open for Euler and Navier-Stokes! 



What is the problem with walls ? 
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•  The wall imposes a strong tangential constraint  
    on Navier-Stokes viscous flows, 
•  No boundary condition affects the tangential velocity  
    for Euler inviscid flows. 
•  Navier’s b. c. (1822) : 

No-slip b.c. Slip b.c. 

slip velocity slip length wall shear 



Dissipation of energy in the inviscid limit 
What happens for ν  0? 

       E energy,  Z enstrophy, 
fluid kinematic viscosity 
        flow vorticity. 

Possible vorticity distributions: 







Volume penalization method 

•  For efficiency and simplicity, we would like to stick to a 
spectral solver in periodic, cartesian coordinates. 

•  as a counterpart, we need to add an additional term in 
the equations to approximate the effect of the 
boundaries, 

•  the geometry is encoded in a mask function      ,  
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Resolution 
N=81922 

Nguyen van yen, 
M. F. and 

 Schneider, 
2010 

Time evolution 
of vorticity  
at the wall 

computed on 
IBM Blue-Gene, 

IDRIS, 2010 
(100 Tflops) 

DNS of 2D confined flow 



 Dipole impinging on a wall at Re= 2500 

M. M. Koochesfahni and C. P. Gendrich 
Michigan State University 



Dipole-wall collision at Re=8000 
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Dipole-wall collision 
Time evolution of energy 

and of energy dissipation rate 
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Energy dissipation 
Energy dissipated  

during the dipole-wall collision for  
increasing Reynolds numbers  
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What are dissipative structures ? 

•  Our experiments with the dipole-wall collision 
suggest that the flow remains dissipative in the 
inviscid limit, 

•  it is tempting to relate these structures to energy 
dissipation,  

•  the kinetic energy density                obeys: 
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Local dissipation rate 



Resolution 
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DNS of dipole crashing onto a wall 
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Nguyen van yen, M. F.  
and Schneider, 
PRL, 106(18) 



Dipole-wall collision at Re=8000 
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Nguyen van yen, M. F.  
and Schneider, 
PRL, 106(18) 
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Dissipative structures 

Detached vortex 

Attached vorticity layer 
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Snapshot of the local dissipation rate 

    The strongest values of 
the energy dissipation 
rate is observed inside 
the main vortex that 
detached from the 
boundary layer,  

    rather than inside the 
boundary layer itself. 

Local dissipation rate 
for the dipole-wall collision  

at t= 0.5 

R. Nguyen van yen, M. F.  
and K. Schneider, 

PRL, 106(18) 



R. Nguyen van yen, M. F.  
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Production of dissipative structures 

Detached vortex 
High dissipation rate 

Low dissipation rate 



Euler-Prandtl               Navier-Stokes 



Prandtl’s singularity 

L. L. van Dommelen  
and S. F. Shen., 1980 
J. Comp. Phys., 38(2) 



Prandtl solution’s blow-up 

Evolution of vorticity max Evolution of analyticity strip 



Prandtl solution blows up at tD 

Evolution of vorticity max Evolution of analyticity strip 

Navier-Stokes solution converges towards Euler’s solution 
       for ν  0 until tD when the bounday layer detaches    

tD 



What happens after the singularity? 

Maximum of vorticity Enstrophy 

Prandtl’s scaling in Re1/2 before tD~ 55.8 
  and Kato’s scaling in Re after 
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Conclusion 

Prandtl solution becomes singular when boundary layers detach. 

The viscous Navier-Stokes solution converges uniformly  
to the inviscid Euler solution for t<tD, following Prandtl’s scaling 
as Re-1/2  but ceases to converge for t>tD. 

The detachment process involves spatial scales 
in different directions, and not only parallel to the wall,  
as fine as Re-1 following Kato’s scaling. 

R. Nguyen van yen, M. F. and  
K. Schneider, 2011 

Phys. Rev. Lett., 106(18), 184502 

R. Nguyen van yen, M. Waidman, R. Klein, 
M.F. and K. Schneider, 2014 

Preprint 

The production of dissipative structures is a key feature  of fully-
developed turbulent flows due to boundary layer detachment. 



Open questions 

-  Would Navier-Stokes solution loose smoothness after tD  
and converge to a weak singular dissipative solution  
of Euler's equation, as suggested by Leray in 1934? 
- How can such a weak solution be approximated numerically?  

J. Leray, 1934 
Sur le mouvement d’un fluide visqueux, 

Acta Mathematica, 63 
C. de Lellis and L. Székzlyhidi, 2010 

Archives Rational Mechanics and  Analysis, 
195(1), 221-260 

Numerical results suggest that a new asymptotic description  
of the flow beyond the breakdown of the Prandtl regime is possible,  
and studying it might help to understand the observed scalings. 

Here are few open questions related to this: 



On 16 May 1748 Euler, president of the Prussian 
Academy of Sciences, read the problem he proposed 

for the Prize of Mathematics to be given in 1750 : 

'Theoria resistentiae quam patitur corpus in fluido 
motum, ex principiis omnino novis et simplissimis 
deducta, habita ratione tum velocitatis, figurae, !

et massae corporis moti, tum densitatis !
& compressionis partium fluidi'.  

    Six mathematicians, including d’Alembert, sent a manuscript,  
but Euler was not satisfied and postponed the prize. 

Grimberg, D’Alembert et les équations  
aux dérivées partielles en hydrodynamique,  

Thèse de Doctorat, Université de Paris VII, 1998 

Open mathematical question since 1847 



Jean Le Rond d’Alembert 
(1717-1783)  

Leonhard Euler 
(1707-1783)  



D’Alembert’s paradox	


1749 1752 

’It seems to me that the theory, developed in all 
possible rigor, gives, at least in several cases, a 
strictly vanishing resistance, a singular paradox 
which I leave to future geometers to elucidate.’ 

D’Alembert was upset and decided to translate his latin 
Manuscript of 1749 and publish it in French in 1752  



How do Navier-Stokes solutions behave? 

//www.claymath.org/millennium/index.php	


‘The challenge is to make substantial progress  
toward a mathematical theory which will unlock 

the secrets hidden in the Navier-Stokes equations.’ 	


no yes Are there finite time 
singularities? 

         This is still an open problem  
             Clay Prize of Mathematics, 2000 : 
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M. Otelbayev, 2013	
 T. Tao, 2014	
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