Experimental and numerical studies of stratified turbulence forced with columnar dipoles.

Paul Billant

with Pierre Augier, Jean-Marc Chomaz, Axel Deloncle, Eletta Negretti

Laboratoire d'Hydrodynamique (LadHyX) CNRS, Ecole Polytechnique, Palaiseau

ANR OLA "Oceanic LAyering" (2011-2015) coordinated by Lien Hua (now by C. Ménesguen & P. Klein) (Ifremer, Ladhyx, Irphe, Legi)

Layering around meddies

Seismic image of a meddies in the Gulf of Cadiz

J. Fluid Mech. (2013), *vol.* 731, *pp.* 418–442. © Cambridge University Press 2013 418 doi:10.1017/jfm.2013.369

Layering and turbulence surrounding an anticyclonic oceanic vortex: *in situ* observations and quasi-geostrophic numerical simulations

Bach Lien Hua¹,[‡], Claire Ménesguen¹,[†], Sylvie Le Gentil¹, Richard Schopp¹, Bruno Marsset² and Hidenori Aiki³ Layering around meddies:

« a physical manifestation of an interior route to dissipation in the oceans ?»

Strongly stratified turbulence

Small horizontal Froude number: $F_h = \frac{U}{NL_h} \ll 1$ $\left(Ro = \frac{U}{fL_h} = \infty\right)$

Godeferd & Staquet (2003)

- Strongly anisotropic
- Three-dimensional dynamics

Properties of strongly stratified turbulence

✓ <u>Kinetic energy spectrum</u>: $E(k_h) = C_1 \epsilon_K^{2/3} k_h^{-5/3}$ C $E(k_z) \sim N^2 k_z^{-3}$ (Lindborg, 2

$$C_1 pprox 0.5$$

(Lindborg, 2006; Waite & Bartello 2004; Riley & de Bruyn Kops 2003,...)

$$\checkmark \underline{\text{Condition on viscous effects:}} \quad \mathcal{R} = \frac{\mathbf{u_h} \nabla_{\mathbf{h}} \mathbf{u_h}}{\nu \frac{\partial^2 \mathbf{u_h}}{\partial z^2}} = ReF_h^2 \gg 1$$

$$\mathcal{R}_t = \frac{\epsilon_K}{\nu N^2} \propto \mathcal{R} \quad (\text{Turbulence intensity or buoyancy Reynolds number})$$
(Brethouwer, Billant, Lindborg & Chomaz 2007)

✓ Direct cascade of energy

(Lindborg, 2006, ...)

Outline

 Some physical mechanisms involved in the cascade: transition to stratified turbulence from a single columnar dipole

• Experimental and numerical studies of stratified turbulence forced by columnar dipoles

Direct Numerical Simulations of a pair of counter-rotating vortices

- Boussinesq approximation
- periodic box
- reference frame where the vortex pair is steady initially

Enstrophy evolution for Re=1060

 $Z_h \sim \left(\frac{du_h}{dz}\right)^2$ => Strong vertical shear due to the bending of the vortices by the zigzag instability

What saturates the enstrophy growth?

 \Rightarrow Saturation of the zigzag instability due to viscous effects

(not due to nonlinear effects)

Shear instability for Re=3180 ?

Criterion for the Kelvin–Helmholtz instability

Snortral analysis of the breakdown

 $Re = 28000 \quad F_h = 0.045 \quad 1024 \times 1024 \times 128$

Transition to turbulence by a sequence of instabilities: zigzag instability \rightarrow shear instability \rightarrow turbulence

Augier, Chomaz & Billant (J. Fluid Mech., 2012)

Outline

 Some physical mechanisms involved in the cascade: transition to stratified turbulence from a single columnar dipole

• Experimental and numerical studies of stratified turbulence forced by columnar dipoles

Experimental set-up

forced turbulence instead of decaying turbulence => $\mathcal{R}_t \sim Const$

Augier, Billant, Negretti & Chomaz (Phys. Fluids., 2014)

Effect of the buoyancy Reynolds number

PIV in vertical cross-sections

=> transition from viscous to inviscid regime when Rt is increased but the maximum Rt is not large enough

Numerical simulations

• Navier-Stokes solver (Boussinesq approximation):

pseudo-spectral code, MPI parallel computing, from 256 \times 256 \times 128 to 768 \times 768 \times 192

- DNS with forcing similar to the experiments
 - in physical space with columnar dipoles (Lamb-Oseen)
 periodic in time

Augier, Billant & Chomaz (J. Fluid Mech., submitted)

Time evolution

Compensated horizontal and vertical spectra

Simulations for large buoyancy Reynolds number

F_h	Re	${\cal R}$	\mathcal{R}_t	${\mathcal{L}_h}^2 imes \mathcal{L}_z$	$N_h{}^2 \times N_z$
0.29	28000	2355	5.3	$16^2 \times 2.29$	$1792^2 \times 256$
0.5	22500	5625	10	$16^2 \times 4.00$	$1024^2 \times 256$
0.66	22500	9800	20	$16^2 \times 5.33$	$1152^2 \times 384$
0.85	20000	14450	25	$16^2 \times 6.86$	$896^2 \times 384$

- quasi-DNS with weak hyperviscosity (Kolmogorov length scale nearly resolved)
- smaller box to resolve finer scales
- dipoles are periodically produced at a random location

Time evolution

Horizontal and vertical spectra for $\mathcal{R}_t = 20_{(1152 \times 1152 \times 384)}$

Augier, Billant & Chomaz (J. Fluid Mech., soumis)

Vertical spectra

return to isotropy at the Ozmidov wavenumber $k_o \sim rac{N^{3/2}}{\epsilon_{
u}^{1/2}}$

Conclusions

- Transition to turbulence from coherent vortices by a sequence of instabilities: zigzag and shear instabilities
- Forced stratified turbulence:
 - spectra in agreement with the theory of strongly stratified turbulence, but there exist deviations.
 - direct transfers to the buoyancy lengthscale
 - return to quasi-isotropy for scales smaller than the Ozmidov lengthscale

• Next: weakly rotating stratified turbulence