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What is zonostrophic instability?
Meridional flow on a beta-plane, or any sort 
of PV mixing, is unstable to the formation of 
zonal jets. This zonostrophic instability afflicts 

both Rossby waves and turbulence.

Two-layer baroclinic 
instability in a wide  

doubly-periodic 
domain, starting from 

rest. Upper-layer 
PV

Barotropic zonally-
averaged zonal.

Zonostrophic instability 
is a secondary instability 
that disrupts growth of 

the most-unstable 
baroclinic mode. 

(see Panetta  JAS 1993)2



Saturated zonostrophic instability	

and mature jets in baroclinic turbulence

Upper-layer 
PV

Barotropic zonally-
averaged zonal.

ū(y, t)/U

ūt + @yu0v0 = �µū2

Equilibrated baroclinic 
instability in a wide  

doubly-periodic domain. 

(see Panetta  JAS 1993)3

Note spatial 
homogeneity and 

symmetry 
breaking. 



Another example: Stochastically 
forced barotropic flow.	


1 Introduction

ζt + u·∇ζ + βv = ξ − µζ

∫

ū(y, t) dy = 0

ζ = ∇2ψ

ū(y, t)

Here is the Cahn-Hilliard equation

At = [±A − Azz ± A2 + A3]zz = ∂2
z

δF
δA

At = [±A − Azz ± A2 + A3]zz , where bz = g0 + ϵA(z, t)

F =

∫

±
1

2
A2 +

1

2
A2

z ±
1

3
A3 +

1

4
A4 dz , and

dF
dt

= −
∫ (

∂z
δF
δA

)2

dz

d

dt

∫ H

0

e − zb dz =

∫ H

0

P − αℓ−1e3/2 dz

1

ℓ2
=

1

D2
+ γ

bz

e

e(z, t) = TKE and b(z, t) = mean buoyancy
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The jet profile is very 
similar to that of the 
baroclinic simulations.

Note broken 
symmetry again. 
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The stability of mixed Rossby gravity (MRG) waves has been investigated numerically
using three-dimensionally consistent high-resolution simulations of the continuously
stratified primitive equations. For short enough zonal wavelength, the westward phase
propagating MRG wave is strongly destabilized by barotropic shear instability leading
to the formation of zonal jets. The large-scale instability of the zonally short wave
generates zonal jets because it consists primarily of sheared meridional motions, as
shown recently for the short barotropic Rossby wave problem.

Simulations were done in a variety of domain geometries: a periodic re-entrant
channel, a basin with a short MRG wave forced in its western part and a very long
channel initialized with a zonally localized MRG wave. The characteristics of the
zonal jets vary with the geometry. In the periodic re-entrant channel, barotropic zonal
jets dominate the total flow response at the equator and its immediate vicinity. In the
other cases, the destabilization leads to zonal jets with quite different characteristics,
especially in the eastward group propagating part of the signal. The most striking
result concerns the formation of zonal jets at the equator, alternating in sign in
the vertical, with vertical scale short compared to the scale of the forcing or initial
conditions.

A stability analysis of a simplified perturbation vorticity equation is formulated
to explain the spatial scale selection and growth rate of the zonal jets as functions
of the characteristics of the basic state MRG wave. For both types of zonal jets,
the model predicts that their meridional scales are comparable to the zonal scale
of the MRG wave basic state, while their growth rates scale as µ ∝ Fr |k|, where Fr
is the Froude number of the meridional velocity component of the basic state and
k its non-dimensional zonal wavenumber. The vertical scale of the baroclinic zonal
jets corresponds to the dominant harmonic ppeak of the basic state in the fastest
growing mode, given by ppeak ≈ 0.55 k2. Thus, the shorter the zonal wavelength of
the basic state MRG wave, the narrower the meridional scale of the zonal jets, both
barotropic and baroclinic, with the vertical scale of the baroclinic jets being tied to
their meridional scale through the equatorial radius of deformation, which decreases
as the square root of the vertical wavenumber. The predictions of the spatial scales
are in both qualitative and quantitative agreement with the numerical simulations,
where shorter vertical scale baroclinic zonal jets are favoured by shorter-wavelength
longer-period MRG wave basic states, with the vertical mode number increasing as
the square of the MRG wave period.
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Figure 1. Dispersion relation for free equatorial waves of a given vertical mode m. Axes
have been non-dimensionalized by

√
βcm for frequency and by

√
β/cm for zonal wavenumber.

+, values of k for which initial-value MRG wave simulations have been performed. The dashed
line corresponds to the dispersion relation for zonally propagating mid-latitude barotropic
Rossby waves.

in Hermite functions Dr,m(y) satisfying

d2Dr,m

dy2
− f 2

c2
m

Dr,m = −(2r + 1)
β

cm

Dr,m

yields for zonally propagating plane waves proportional to exp [i(kx − ωt)] the
dispersion relation

k2 + β
k

ω
− ω2

c2
m

+ (2r + 1)
β

cm

= 0. (2.4)

For r = −1, 0, 1, . . . the Kelvin, mixed Rossby gravity, Rossby and gravity free wave
solutions can be obtained (Matsuno 1966). The dispersion relation for free equatorial
waves is plotted in figure 1 for the lowest values of r .

For the case of a MRG wave (r = 0), the dispersion relation for vertical mode m
and zonal wavenumber k is

ω = 1
2
cm

(
k +

√
k2 + 4λ−2

m

)
, λm =

√
cm

β
. (2.5)

3. Non-dimensionalization
In the present study, we shall focus upon the destabilization mechanisms of a

moderate-amplitude free MRG wave of vertical wavenumber m⋆ = mπ/H , where m
is an integer, zonal wavenumber k⋆ and frequency ω⋆. The Kelvin wave speed for the
vertical mode of the basic state is denoted c⋆ and its baroclinic equatorial radius of
deformation is λ⋆ =

√
c⋆/β .

Hereinafter, the notation is such that dimensional quantities are denoted as ( )⋆

whereas non-dimensional quantities have no particular annotation.
Independent variables are non-dimensionalized by

x = x⋆/λ⋆, y = y⋆/λ⋆, z = z⋆m⋆, t = t⋆
√

βc⋆,

The MRG,  with	

!

is  zonostrophically 
unstable.

The Kelvin wave, with	

!

 does not suffer zonostrophic 
instability.

Ke
lv

in

MRG

v 6= 0

v = 0

Yet another 
example of 

zonostrophic  
instability?
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Equatorial sections of zonal 
velocity induced by the 

zonostrophic instability of a 
free,  low vertical mode 

MRG forced in the western 
part of the basin.

A meridional section of 
zonal velocity.
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Figure 3. (a)–(c) Equatorial sections of instantaneous zonal velocity for basin simulations
with an oscillating forcing in the western part of the basin that excites a free MRG wave of
(a) k = −3, (b) k = −4.5 and (c) k = −6. (d) Meridional section of instanteneous zonal velocity
at mid-basin for the case k = −6. The colours range from −Umax (blue) to Umax (red), where
Umax is the zonal velocity absolute maximum.

observed in the channel geometry except for the case k = −3. The EDJ-like signal
excited by the basic state MRG signal propagates eastward until it encounters the
eastern boundary where it reflects to form a basin mode, the details of which are
studied by d’Orgeville et al. (2007). Moreover, the EDJ vertical scale selection is
reported there to be rather insensitive to the vertical mode m⋆ of the basic-state wave,
being primarily set by the dimensional period T ⋆ of the basic-state MRG wave. We
shall return to this result in the next section, which attempts to provide a theoretical
rationale for the vertical-scale selection mechanism. For the basin configuration case,
the low vertical modes remain confined to the western part of the basin, building up
an interesting extra-equatorial meridional structure, plotted in figure 3(d) for the case
k = −6, with a quasi-barotropic belt of eastward currents at ±2◦ latitude flanking the
EDJ-like structures confined to the equator.

5.2.2. Zonally localized MRG wave

The same three cases, k = −3, −4.5, −6 and m⋆H/π = 2, have also been studied in
a very long channel of zonal extent 150◦, in which the basic state MRG wave is
initially localized within [40◦, 60◦] longitude with a Gaussian decay of 10◦ at each end
of the initialization subdomain. This initial-value problem allows both westward and
eastward propagating signals to be distinguished and a more quantitative assessment
of the vertical-scale selection of the various types of jets.
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eastern boundary where it reflects to form a basin mode, the details of which are
studied by d’Orgeville et al. (2007). Moreover, the EDJ vertical scale selection is
reported there to be rather insensitive to the vertical mode m⋆ of the basic-state wave,
being primarily set by the dimensional period T ⋆ of the basic-state MRG wave. We
shall return to this result in the next section, which attempts to provide a theoretical
rationale for the vertical-scale selection mechanism. For the basin configuration case,
the low vertical modes remain confined to the western part of the basin, building up
an interesting extra-equatorial meridional structure, plotted in figure 3(d) for the case
k = −6, with a quasi-barotropic belt of eastward currents at ±2◦ latitude flanking the
EDJ-like structures confined to the equator.

5.2.2. Zonally localized MRG wave

The same three cases, k = −3, −4.5, −6 and m⋆H/π = 2, have also been studied in
a very long channel of zonal extent 150◦, in which the basic state MRG wave is
initially localized within [40◦, 60◦] longitude with a Gaussian decay of 10◦ at each end
of the initialization subdomain. This initial-value problem allows both westward and
eastward propagating signals to be distinguished and a more quantitative assessment
of the vertical-scale selection of the various types of jets.
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lie is reduced to a curve. In that limit, the secondary wave of the most unstable
perturbation does not have its wavevector orthogonal to that of the primary wave.

Given that in the large negative k limit, the MRG wave dispersion relation
approaches that of the mid-latitude barotropic Rossby wave and that the motion
is almost horizontally non-divergent in that limit, by extrapolating Gill’s result we
can expect that short westward MRG waves will destabilize through a barotropic
instability mechanism and that their destabilization will give rise to large-scale zonal
flows. On the other hand, the destabilization of long and intermediate wavelength
westward MRG waves is likely to depend on triad interactions and not produce zonal
flows. Eastward propagating MRG waves have relatively high frequencies, thus have
little potential vorticity (since PV ∝ V ⋆/ω⋆, see e.g. Ripa 1983), and are therefore not
likely to lead to the large-scale rearrangement of angular momentum necessary to
produce zonal flows.

It is important to note that linear waves on the equatorial β-plane are not exact
solutions of the nonlinear equations of motion, in contrast to linear quasi-geostrophic
waves on the mid-latitude β-plane and linear internal waves, so the large M limit also
entails a large departure from the linear wave regime. We can nevertheless explore the
large negative k limit, independently of the wave amplitude. Also, trapped equatorial
free waves have a baroclinic vertical structure which must be taken into account.
We will see that the destabilization of a short MRG wave leads to a ‘barotropic’
component, with vertical scales larger than or comparable to the primary wave, and
a ‘baroclinic’ component, with vertical scale determined by the vertical scale of free
baroclinic equatorial waves with meridional scale comparable to the zonal scale of
the basic state MRG wave.

5. Numerical evidence of destabilization of mixed Rossby gravity waves
The primitive equations code we have used for all the numerical simulations is

ROMS (Shchepetkin & McWilliams 2005). It is both highly parallelized and vectorized
to efficiently run on the Earth Simulator, the use of which was required for the high-
resolution simulations. For all cases, the domain has a constant depth H = 5000 m, and
the stratification is taken to be constant with N = 2 × 10−3 s−1. The basic state MRG
wave is of low vertical mode, m⋆H/π = 2, with a corresponding deformation scale of
2.3◦ latitude. The meridional extent of the domain is [−15◦, 15◦] latitude. The hori-
zontal grid size is 1/11◦ and the number of levels in the vertical varies between 200 and
400 to ensure a three-dimensionally consistent high resolution for capturing the EDJ-
like structures. The explicit lateral dissipation and diffusion coefficients are 100 ms−2

while the vertical coefficients are 10−6 ms−2. Such small values for the vertical coeffi-
cients cannot affect the vertical-scale selection of patterns in the numerical simulations.

5.1. Periodic channel geometry simulations

We have first performed initial-value simulations in a zonally periodic channel
geometry, with the basic state initialized as a free MRG wave. Simulations were perfor-
med for k = −0.75, −1.5, −3, −4.5, −6 (corresponding to the leftmost cross symbols
in figure 1). Such free waves have dimensional periods T ⋆ of 17, 24, 40, 56 and 74
days and non-dimensional frequencies ω =0.69, 0.50, 0.30, 0.21, 0.16, respectively. The
zonal extent of the channel is taken to be 10◦ in longitude or equal to the basic state
MRG wavelength if the latter is larger than 10◦. The simulations were performed with
a meridional Froude number Fr = 0.2. Moreover, for westward-propagating MRG
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observed in the channel geometry except for the case k = −3. The EDJ-like signal
excited by the basic state MRG signal propagates eastward until it encounters the
eastern boundary where it reflects to form a basin mode, the details of which are
studied by d’Orgeville et al. (2007). Moreover, the EDJ vertical scale selection is
reported there to be rather insensitive to the vertical mode m⋆ of the basic-state wave,
being primarily set by the dimensional period T ⋆ of the basic-state MRG wave. We
shall return to this result in the next section, which attempts to provide a theoretical
rationale for the vertical-scale selection mechanism. For the basin configuration case,
the low vertical modes remain confined to the western part of the basin, building up
an interesting extra-equatorial meridional structure, plotted in figure 3(d) for the case
k = −6, with a quasi-barotropic belt of eastward currents at ±2◦ latitude flanking the
EDJ-like structures confined to the equator.

5.2.2. Zonally localized MRG wave

The same three cases, k = −3, −4.5, −6 and m⋆H/π = 2, have also been studied in
a very long channel of zonal extent 150◦, in which the basic state MRG wave is
initially localized within [40◦, 60◦] longitude with a Gaussian decay of 10◦ at each end
of the initialization subdomain. This initial-value problem allows both westward and
eastward propagating signals to be distinguished and a more quantitative assessment
of the vertical-scale selection of the various types of jets.

k = �6
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uy < 0

v′u′ < 0

uy > 0

v′u′ > 0

Physical basis of 
Zonostrophic Instability: 

negative viscosity 

ℓRhines =

√

U

β

ū(y, t) ūt +
(

u′v′

)

y
= bottom drag

u′v′ > 0 u′v′ = 0 u′v′ < 0

u′v′ ∼ +1
2
(ka)2tūy

q1t + Uq1x +
(

β + λ−2U
)

ψ1x + J (ψ1, q1) = −ν∇8q1 ,

q2t − Uq2x +
(

β − λ−2U
)

ψ2x + J (ψ2, q2) = −ν∇8q2 − κ∇2ψ2 ,

qn = ∇2ψn + 1
2
(−)nλ−2(ψ1 − ψ2) (un, vn) = (−ψny, ψnx).

+U − U g′ H

f0 × 2U = g′ × interface slope

λ =
√

g′H/f0 ∼ 10 − 50 kilometers

∇PV1 = β + λ−2U > 0

∇PV2 = β − λ−2U < 0

2

ℓRhines =

√

U

β

ū(y, t) ūt +
(

u′v′

)

y
= bottom drag

u′v′ > 0 u′v′ = 0 u′v′ < 0

u′v′ ∼ +1
2
(ka)2tūy

ψ′ = a cos [k (x − ū(y)t)]

q1t + Uq1x +
(

β + λ−2U
)

ψ1x + J (ψ1, q1) = −ν∇8q1 ,

q2t − Uq2x +
(

β − λ−2U
)

ψ2x + J (ψ2, q2) = −ν∇8q2 − κ∇2ψ2 ,

qn = ∇2ψn + 1
2
(−)nλ−2(ψ1 − ψ2) (un, vn) = (−ψny, ψnx).

+U − U g′ H

f0 × 2U = g′ × interface slope

λ =
√

g′H/f0 ∼ 10 − 50 kilometers

∇PV1 = β + λ−2U > 0

2

1 Introduction

uJ ∼ βℓ2
J ⇒

⟨ū2⟩
U2

∼ β2
∗

(
ℓJ

λ

)4

ℓRhines =

√

U

β

βλ2

U
=

1

2

κλ2

U
=

1

50

ū(y, t) ūt +
(

u′v′

)

y
= −κū

ℓR ≡
√

U/β

u′v′ > 0 u′v′ = 0 u′v′ < 0

u′v′ ∼ +1
2
(ka)2tūy

λ =

√
2g′H

f0

≪ L

ψ′ = a cos [k (x − ū(y)t)]

1

(Starr 1968, Sivashinsky 1985, Manfroi & Young 1999, 	

Berloff, Kamenkovich & Pedlosky 2009)

Weak zonal distortion of 
meridional flow un-mixes 

momentum and maintains the 
jets against bottom drag.

ρ1 ρ2

(u1, v1) =

(

−
∂ψ1

∂y
,
∂ψ1

∂x

)

ψ1 ∝ pressure in layer 1

λ =

√
2g′H

f0

∼ 10 to 40 km

ψn ∝ exp [ikx(x − ct)]

ky = 0 ⇒ J(ψ,∇2ψ) = 0

ūt = −1
2
(ka)2tūyy − κū

7

ρ1 ρ2

(u1, v1) =

(

−
∂ψ1

∂y
,
∂ψ1

∂x

)

ψ1 ∝ pressure in layer 1

λ =

√
2g′H

f0

∼ 10 to 40 km

ψn ∝ exp [ikx(x − ct)]

ky = 0 ⇒ J(ψ,∇2ψ) = 0

ūt = −1
2
(ka)2tūyy − κū

ū(y, t)
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Zonostrophic instability: the simplest model

ūt = −(u′v′)y (7)

= v′q′ (8)

v′q′ = −κe (β − ūyy)
︸ ︷︷ ︸

=q̄y

(9)

∫

v′q′ dy = −κeβ

∫

dy ̸= 0 (10)

ξ(x, y, t)

ct + ucx + vcy + βc = −µc + νq∇2qc

∫

v′q′
︸︷︷︸

=−(u′v′)y

dy = 0 ,

∫

v′c′ dy ̸= 0

v′c′ ≈ −κe (β + c̄y)

c̄(y) and 1.6 ζ̄

v′c′ and 1.6 v′q′ + ⟨v′c′⟩

κe
def
= −⟨v′c′⟩/β

q̄y = β − ūyy J
def
= −v′q′

q̄t = ∂y J(q̄y)
︸ ︷︷ ︸

=(u′v′)y

+ · · ·

ζt + uζx + vζy + βv = A cos kfx
︸ ︷︷ ︸

ξ

−µζ + ν∇2ζ

1.1. The quasilinear (QL) model

The main hypothesis of this work is that many aspects of zonation can be understood using the
quasilinear (QL) model. The QL model consists of the zonal-mean equation (??), coupled with the
quasilinear eddy equation

ζ′t + Uζ′x + (β − Uyy)ψ′
x = ξ − µζ′ + ν∇2ζ′ . (11)

In (11), ζ′ = ψ′
xx + ψ′

yy is the eddy vorticity and the eddy velocities are u′ = −ψ′
y and v′ = ψ′

x.
“Quasilinear” means that the eddy-eddy nonlinearity ψ′

xζ′y − ψ′
yζ′x is neglected in (11). Due to the

coupling between the mean and the eddies in both (??) and (11) the QL system is still nonlinear. But
because the eddy-eddy nonlinearity u′ζ′x+v′ζ′y , is gone, the QL system cannot exhibit a Kolmogorov-
Kraichnan inverse energy cascade. In the QL model all nonlinear interactions require participation

2

Force a meridional shear flow:

The laminar solution is unstable:
zonal flow

After asymptotic reduction, the 
Cahn-Hilliard equation emerges:

v′

1q
′

1 = −D1q̄1y v′

2q
′

2 = −D2q̄2y , Dn =
√

eℓ ?

ū(y, t) ∼ 10U

ū(y, t) ≡ L−1

∮

u(x, y, t) dx

UT = −µU − (u′v′)Y , (3)

= −µU −
(

νeU + ηUY Y + α2U
2 − α3U

3
)

Y Y
, (4)

= −µU + [visc(U)UY ]Y − ηUY Y Y Y . (5)

U = −ψ0Y
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1 Introduction

ζt + u·∇ζ + βv = ξ − µζ

∫

ū(y, t) dy = 0

ζ = ∇2ψ

ū(y, t)

µū = v′q′

β v′q′ = q′ξ − µq′2

ψ(x, y, t) = ψL(x) + U(y, t) + · · ·

Here is the Cahn-Hilliard equation

At = [±A − Azz ± A2 + A3]zz = ∂2
z

δF
δA

At = [±A − Azz ± A2 + A3]zz , where bz = g0 + ϵA(z, t)

F =

∫

±
1

2
A2 +

1

2
A2

z ±
1

3
A3 +

1

4
A4 dz , and

dF
dt

= −
∫ (

∂z
δF
δA

)2

dz

1
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The CH Equation for zonal flow evolution:	

a universal model for zonal jets?

Negative 
viscosity

East-West 
symmetry	

 breaking 
by beta

Drag

U = �Ay
There is a variational 

formulation
AT = ��V

�A

The Lyapunov 
functional is V [A] =

Z
1
6
A4

Y +
2
3
A3

Y �
r

2
A2

Y +
µ

2
A2 +

3
2
A2

Y Y dY

dV
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NL saturation

Linear regularization

1 Introduction

ζt + u·∇ζ + βv = ξ − µζ

∫

ū(y, t) dy = 0

ζ = ∇2ψ

ū(y, t)

µū = v′q′

Ut = −µU −
(

νU + α2U
2 − α3U

3 + ηUyy

)

yy

β v′q′ = q′ξ − µq′2

ψ(x, y, t) = ψL(x) + U(y, t) + · · ·

Here is the Cahn-Hilliard equation

At = [±A − Azz ± A2 + A3]zz = ∂2
z

δF
δA

At = [±A − Azz ± A2 + A3]zz , where bz = g0 + ϵA(z, t)

1

Only drag penalizes the 
formation of wider jets.
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Solution of the  CH Equation
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A CH solution showing 
a transition from six 

jets to five

Random IC

Jet scale selection requires nonzero drag, 
and can be understood via minimization 

the Lypapunov functional V[A].	


Without drag, the 
jets keep merging 

forever.

1 Introduction

ζt + u·∇ζ + βv = ξ − µζ

∫

ū(y, t) dy = 0

ζ = ∇2ψ

ū(y, t)

µū = v′q′

Ut = −µU −
(

νU + α2U
2 − α3U

3 + ηUyy

)

yy

β v′q′ = q′ξ − µq′2

ψ(x, y, t) = ψL(x) + U(y, t) + · · ·

Here is the Cahn-Hilliard equation

At = [±A − Azz ± A2 + A3]zz = ∂2
z

δF
δA

At = [±A − Azz ± A2 + A3]zz , where bz = g0 + ϵA(z, t)
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Comparison of CH jets 
with zonal-mean jets 	

from a simulation of 

baroclinic turbulence.
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• CH can be derived systematically in the weakly 
nonlinear, viscously controlled,  limit.	


• CH is the simplest negative-viscosity description 
that might work. 	


• Comparison shows that CH jets match those of  
jets from turbulence simulations. 	


• The variational structure of CH explains why the 
jets are stable, despite turbulent buffeting, random 
forcing etc.	


• The CH model explains the arrest of jet merger by 
drag.	


• The CH model can be used to predict and explain 
jet drift....

Why the Cahn-Hilliard equation?
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Sometimes zonal jets drift….. 
Two-layer QG baroclinic turbulence, with bottom topographic slope
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for all values of hy, with a particular jump in the hy5 0.4
series between hx5 0.2 and 0.3, but no clear pattern with
increasing hy. A clear relationship of increasing energy
as uBT decreases is seen in Fig. 9c, although it does not
hold at the lower values plotted.
Thus, these results confirm the previous finding, in

section 3b, that the system shows a large increase in eddy
velocity with increasing hx, which results in an increase
in the Rhines scale and so the jet spacing, even while the
total magnitude of the barotropic PV gradient, GBT, is
increasing. The two-layer system shows a change in en-
ergies over several orders of magnitude, which we pos-
tulate is due to the across-PV gradient jets and the
subsequent increase in relative vorticity in order to
conserve PV. This is discussed further in section 3e.
The effect of increasing hx is to move the direction of

the barotropic PV gradient (GBT) closer to the direction
of the background shear (see Fig. 1). Thus the increase
of eddy energy production with hx and the overall trend
in the relationship with uBT is consistent with Arbic and
Flierl (2004b), who found a maximum in energy when
uBT 5 1808 (assuming that the pattern seen in Fig. 9c
would be symmetric about uBT 5 908, as has been found
in a few test cases). It appears that at high values of uBT
there is a large decrease in the magnitude of « as hy is
increased, even though uBT changes very little. This is

due to the stabilizing effect of hy, similar to that of b
(Thompson 2010).
Several simulations at higher resolution were carried

out to assess any resolution dependence; however the
results found were indistinguishable from the equivalent
lower resolution simulations.

d. Jet drift

During analysis of the results, it was noted that sim-
ulations with tilted jets exhibited ‘‘jet drift,’’ that is, the
jets present changed their position within the domain
over time.An exampleHovmöller (space-time) diagram
for a two-layer simulationwithb5 0.75, hy5 0, and hx5
0.1 can be seen in Fig. 8b.
We postulate that this is due to the alignment of the

jets in a direction perpendicular to the barotropic PV
gradient, resulting in jets that are not perpendicular to
the PV gradients in individual layers. Therefore, there is
systematic advection of PV and, potentially, the sys-
tematic growth of PV anomalies aligned with the jets.
The system compensates through continuous displace-
ment of the jets, which in particular means that the long-
time average velocity at any location in the direction
parallel to the PV gradient in a layer is zero. In the upper
layer the PV gradients are in the y direction, therefore
the angle fjet between the jet direction and the x axis is

FIG. 8. (a) Snapshots and mean histograms of total barotropic potential vorticity QBT for two-layer runs with hx 5 0.0, 0.2, and 0.3.
Minima in the histograms correspond to the sharp gradients in PV at the center of jets. (b) Hovmöller diagram showing the non-
dimensional upper-layer perturbation PV field, q1l/U, at x/l5 0 vs time (tU/l) for a two-layer simulation with b5 0.75, hy 5 0 and hx 5
0.1. The jets, characterized by the maxima in the PV gradient, can be seen to be moving with a constant speed in the negative y-direction.
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Upper-layer PV

Barotropic PV

In most previous studies zonal jets are stationary. But 
there are a few cases in which jets systematically drift.
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(Williams 2003, Chan Plumb & Cerovecki 2007, Boland et al. 2012) 



1 Introduction

ζt + u·∇ζ + βv = ξ − µζ

∫

ū(y, t) dy = 0

ζ = ∇2ψ

ū(y, t)

µū = v′q′

Ut = −µU −
(

νU + α2U
2 − α3U

3 + ηUyy

)

yy

Ut = −µU + ξUyyy −
(

νU + α2U
2 − α3U

3 + ηUyy

)

yy

β v′q′ = q′ξ − µq′2

ψ(x, y, t) = ψL(x) + U(y, t) + · · ·

Here is the Cahn-Hilliard equation

At = [±A−Azz ±A2 + A3]zz = ∂2z
δF
δA

At = [±A− Azz ± A2 + A3]zz , where bz = g0 + ϵA(z, t)

1

Jet Drift
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Why does the CH model not 
contain a “third-derivative” term?

1 Introduction

ζt + u·∇ζ + βv = ξ − µζ

ζt + ψxζy − ψyζx + βψx = ξ − µζ

y → −y ψ → −ψ ∴ ζ → −ζ u → u v → −v

∫

ū(y, t) dy = 0

ζ = ∇2ψ

ū(y, t)

ζ = ψxx + ψyy

µū = v′q′

Ut = −µU −
(

νU + α2U
2 − α3U

3 + ηUyy

)

yy

Ut = −µU + ξUyyy −
(

νU + α2U
2 − α3U

3 + ηUyy

)

yy

U(y) U ′′(y)

1

Without forcing and topography, the barotropic PV 
equation has  “mirror symmetry”

If the forcing (and topography) respects mirror symmetry then so 
does the  CH equation i.e., there are only even derivatives.

But if the forcing (or topography) breaks mirror symmetry then 
the CH model can have this dispersive term. We predict that 

breaking mirror symmetry will result in drifting jets.



Breaking statistical mirror symmetry with forcing

Above are three barotropic flat bottom, stochastically 
forced,  beta-plane solutions.

1 Introduction

ζt + u·∇ζ + βv = ξ − µζ

∫

ū(y, t) dy = 0

ζ = ∇2ψ

ū(y, t)

µū = v′q′

Ut = −µU −
(

νU + α2U
2 − α3U

3 + ηUyy

)

yy

Ut = −µU + ξUyyy −
(

νU + α2U
2 − α3U

3 + ηUyy

)

yy

U(y) U ′′(y)

U(y, t)

β v′q′ = q′ξ − µq′2

ψ(x, y, t) = ψL(x) + U(y, t) + · · ·

1

Also steady deterministic forcing: cos x produces no drift. 
But cos x + cos 2x produces drifting jets. 
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