Dynamique et stratification des gyres subtropicaux

Guillaume Maze Herlé Mercier, Kenneth Lee, Charlène Feucher Nicolas Kolodziejczyk, Christophe Maes, Guillaume Roullet Pierre Tandéo, Thierry Penduff, Christophe Cassou

Figure 13.3

Fremer

Global distribution of the climatological mean (a) latent plus sensible heat flux (in W m⁻²; positive, atmosphere to ocean; Yu and Weller, 2007) and (b) CO_2 flux (in mol m⁻² year⁻¹; positive, ocean to atmosphere; Takahashi et al., 2009) at the sea surface; the latter is for the reference year 2000 (non-El Niño conditions). White contours indicate mean sea surface dynamic height (Rio and Hernandez, 2004). ARC, Agulhas Return Current; KOE,

Imawaki et al, 2013

2

Figure 3. Observational trends in SST (shading). Black contours present climatological SST. Stippling indicates regions where the pass the 95% confidence level (Student's t-test).

ORCA025 representation of large-scale stratification features in the North-Atlantic

Guillaume Maze, Herlé Mercier, Charlène Feucher merci à Claude et Camille pour leur aide/commentaires

1958 - 2015, 58 years of simulations 75 vertical levels, 0.25 x 0.25 horizontal grid Forced with DRAKKAR Forcing Set, COARE bulks

remer

PSIbt / 15–Jun–2015

6

Circulation

SSH / 15-Jun-1958

0

า

-20

-40

-60

SSH / 15–Jun–2015

60 40

20

0

-20

-40

-60

20⁰W

40^oW

30°W

1.5

Section WOCE A22 @ 67W

7

freme

ORCA025 - 67W

18° Mode Water (West)

Structure is correct at the beginning of the simulation

18° Mode Water (West)

EDW thickness

75

50

25

0

J

8

```
250
      STc = 26.4; dST = 0.1;
225
     Tc = 18; dT = 1;
200
      PVmax = 1.5e-10;
175
      Hmin = 50; % Minimum thickness
150
125
100
```

Start with a pool around Bermuda Already underestimated (true MW biased) Western pool is destroyed

2	5	0
2	2	5
2	0	0
1	7	5
1	5	0
1	2	5
1	0	0
7	5	
5	0	
2	5	
\sim		

tmp/20170105_114046.pdf

9

Υ.

-2 -3 -4 -5

http://dx.doi.org/10.1016/j.pocean.2016.12.008 http://dx.doi.org/10.17882/47106 https://forge.ifremer.fr/projects/pcm

10

Ð

Ten

Data-driven model of internal heat content structure

Collapse of the Western Stratification Structure Correct Initial State in 1958

ORCA025 / 1st year

1958

PCM:Argo (Maze et al, 2017)

11

OPS

OBSERVATION / 1 year ISAS13nrt ana 2015

Locally Most Frequent Labels

Collapse of the Western Stratification Structure

12

OP

fremer

ORCA025L75GJM189 15-Jan-1958

Collapse of the Western Stratification Structure

ORCA025 / 1st year

ORCA025L75GJM189 1958

70⁰N 65⁰N 60⁰N 55⁰N 50⁰N 45⁰N 40⁰N 35⁰N 30⁰N 25⁰N $20^{0}N$ $15^{0}N$ $10^{0}N$ $5^{0}N$ 0^0

13

LOPS

Fremer

ORCA025 / All years

14

30–Jun–2015

Working hypothesis:

- Not the forcing
- MLD not following the GS
- PV is not lost anymore
- Stratification increases
- No STMW formation
- Loss of structure

OP

2

Ð

rem

Trend in another WBC ?

17

11-12° Mode Water (East)

11-12 MW thickness

OP

J

STc = 27.1; dST = 0.1;Tc = 11.5; dT = 1; % Tc +/- dTPVmax = 1.5e-10;

