A Pliocene marine diatom oxygen isotope record of cryogenic brine formation in the Ross Sea, Antarctica

Justin Dodd
Dept. of Geology and Environmental Geosciences
Northern Illinois University

Tirzah Abbott, Audrina Lehman, Wilson Wiedenheft, Hal Hackett, Meghanne Findlay
Antarctic Ice in a Warming World

Today

Pliocene (future?)

Pollard and DeConto, 2009
Diatom Distribution – Sea Ice Connection
Biogenic Silica (Opal)

- *diatoms*, radiolarians, silicoflagellates, *Chaetoceros* spores, and sponge spicules
- Amorphous silica as opal-A (SiO$_2$$\cdot$$nH_2$O)
- Well-preserved in high-latitude sediments
Opal Structure: Oxygen

- Silica tetrahedra - stable
- Absorbed/structural H₂O
- Exchangeable - OH
 - Decreases as silica "ages"
 - Diagenetic timing?

Moschen et al., 2006
Dodd et al., 2017
Diatom Oxygen Isotope ($\delta^{18}O$) values

- Biogeneic silica $\delta^{18}O$ values record formation water
 - $\delta^{18}O$ value
 - Temperature

- Diagenetic alteration
 - may take 100s to 1000s of years

- Paleoceanographic Proxy
 - diagenetic water source
 - diagenesis may provide *additional* paleoceanographic data
ANtarctic geological DRILLing (ANDRILL)
ANtarctic geological DRILLing (ANDRILL)

84m of ice

850m of water

1285m of sediment

http://www.andrill.org
ANtarctic geological DRILLing (ANDRILL)
mid-Pliocene (3.5 – 4.7 Ma)

McKay et al., 2012
“Stacked” Benthic Foraminifera δ^{18}O Curve

- 57 globally distributed ocean sediment cores
- Record of global ice volume over the past 5.3 Ma

Lisiecki and Raymo, 2005
Marine Oxygen Isotope Record

- Heavier water molecule preferentially lost through precipitation

- Less 18O as clouds move inland/toward poles
 - more 16O in polar ice
 - more 18O in ocean

- sea ice/brine formation concentrates 16O in brine
AND-1B Diatom $\delta^{18}O$

- $+32.6$ to $+37.6\%$o
 - ave. $+35.1\%$o
- TEX_{86} SST 3 to 5°C
- $\delta^{18}O_{water} = 0\%$o (VSMOW)
 - Calculated Water $T>20^\circ$C
- Unrealistic Antarctic SST
 - even during the mid-Pliocene

Abbott et al., in prep
Calculated Water $\delta^{18}O$ Values

- Formation Temperature
 10°C and 20°C (\pm 5°C)

- Water $\delta^{18}O$ values
 Whillans Ice Stream Grounding Zone
 -2.0‰ (VSMOW)

 SIMS Ocean water (Frank et al, 2010)
 -1.0‰ (VSMOW)

 AND-2A Pore Water (Frank et al, 2010)
 ave. -8.3‰ (VSMOW)

Abbott et al., in prep
Pore Water Chemistry and δ¹⁸O

- AND-2A pore waters – yellow and red circles
- AND-1B pore waters – open circles
- AND-1B pore water δ¹⁸O values (calculated) – blue circles

Evaporative brine formation

Cryogenic brine formation

Frank et al., 2010; Abbott et al, in prep.
Warm Pliocene: Cryogenic Brine?

Grasby et al., 2013; Staudigel et al., 2018
Warm Pliocene: Cryogenic Brine?

Grasby et al., 2013; Staudigel et al., 2018
Orbitally-paced cryogenic brine formation during the mid-Pliocene?
Sea-ice derived Cryogenic Brine

- Low diatom δ^{18}O values = Cryogenic Brine
 (Frank et al, 2010; Staudigel et al., 2018; Yang et al, 2018)

- Brine Source and Timing
 - Seasonal sea ice
 - Orbitally-paced cryogenic brine formation
 - Contribution of connate (older) brines

- Warmer than present Ross Sea
 - What does it look like?
 - spatial and temporal distribution of sea ice
Acknowledgements

Funding:
American Chemical Society - Petroleum Research Fund Grant # 53798-DNI2 (Dodd)

National Science Foundation - Antarctic Earth Sciences
Grant# 1443420 (Dodd)

Geological Society of America Graduate Student Research Grants
(Abbott, Lehman – ExxonMobil Graduate Research Grant)

Northern Illinois University Great Journeys Graduate Fellowship and McKearn Fellowship for Undergrad. Research

NIU Stable Isotope Lab Research Group
Jim Rougvie (Beloit College)