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The ocean is filled with
dynamics at scales smaller than
the deformation radius

Processes in the zoo include
internal waves, fronts,
geostrophic and ageostrophic
instabilities

Question: what is the simplest

possible mathematical

description for the emergence

and the role of ((a)geostrophic)

instabilities?




Growth rate

 The simples model of QG turbulence, =~
the 2 layer model, is clearly useless
as it is characterized by a high-k cut-
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* A classic model of QG instabilities
without high-k cut-off is given by the | ¢TI TRk
Charney (1947) model: interaction " o "

between U, at boundaries and interior
N, =»role of boundaries. In an
oceanographic setting U, >0 =»
stability =» need for reversal of U, at
boundary (role of mixed layer)
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(Figure:K. S. Smith)




* One could set as invariant the total energy and an active scalar,
i.e. potential temperature/density at the surface. The resulting
approximation (SQG, Blumen 78) has an inverse cascade of total
energy at low-k and a direct cascade of potential temperature/
density at the boundary at high-k.

* Analogies between SQG and 3D Euler equation make the problem
interesting for the study of singular solutions (Constantin et al, 94)

* Both the Charney and SQG approximations have finite depth of
penetration of the high-k instabilities (at the Charney depth and
exponential decay with k, respectively) = need for
computationally expensive high resolution simulations

* High-k instabilities can be produced with 3 layers. Role of non-
uniform stratification and vertical structure of instabilities will be
explored for comparison with SQG.



* Alternative: to take into account the ageostrophic nature of the
instabilities one could use a surface semi-geostrophic
approximation (SSG, Badin, 2013).

 The resulting Monge-Ampere equation is always singular, regardless of
the initial conditions, while the eventual SQG singularity depends on
them (work with F. Ragone)

e The SSG modes depend less and less on k and project more on the
barotropic mode as the Rossby number increases, in agreement with
penetration in the interior by ML instabilities (Badin et al, 2011). It
predicts also better the flow at depth than SQG.

 The semi-geostrophic equations are however not the simplest
mathematical model



See poster by F. Ragone
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Three layer QG model

Linear stability for non-uniform stratification:

Assume H,/H,..=H,/H, .=€H, H=H,/H, .. The linear PV anomaly
satisfies:
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Set Y. =@, exp[i(kx +1ly— Gt)], C= %

Gives the eigenvalue problem for the amplitudes ¢;:

Where:
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The resulting cubic  ¢”+Pc”+Qc'+R=0

has very cumbersome coefficients, but the system can be solved. Find
marginal stability with usual analysis for cubic equation

* Three roots: 1 neutral wave + 2 c.c. (1 for each interface).

* Itis possible to prove that short-waves are excited at the lower
interface, where they are stimulated by the large I, in the
lower layer (Bretherton 66, Davey 77).

* Shotwave instabilities produced only for S<1 (Smeed 88)

* For large k, the layers decouple.

e Short-wave instabilities remain thus confined in the lower
interface (Davey 77).



Linear stability (B=1, U,=1, U,=0, r;,=0.5)

(a) Growth rate, equal layers

(c) Growth rate, surface intensified

(b) Growth Rates, equal layers
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For S<1 two regions where
separate peaks at low and
high-k are present

Peak at high-k always
smaller than peak at low-k

For S<1, one region where
separate peaks at low and
high-k are present

Peak at high-k always larger
than peak at low-k
Peaks merge for S<-1.2



Nonlinear simulations, B=1, S=-2.6,

(a) y, layer 1, S=-2.6, equal layers

(c) 0, layer 1, S=-2.6, equal layers
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(e) q, layer 1, S=-2.6, equal layers

(b) v, layer 3, S=-2.6, equal layers

'y

(d) 6, layer 3, S=-2.6, equal layers

(f) g, layer 3, S=-2.6, equal layers

equal layers

Large scale fronts in the active scalar
due to saddle flow with secondary
instabilities.

In SQG, possible singularity
formation

Fronts at the sides of the cores of
coherent structures

Frontal structures reflected in the PV
field

No depth dependence for the
structures



Nonlinear simulations, B=1, nonuniform stratification, S=-0.6

(a) v, layer 1, S=-0.6, surface intensified (b) v, layer 3, S=-0.6, surface intensified

* No large scale fronts present in the
active scalar but patchy distribution
and strong coherent structures very
localized

* Filamentary PV field in the lower
layer associated with short-wave
instabilities

* In SQG the active scalar at the
bottom would have a Batchelor
spectra, with filamentary
appearance. In this case it is the PV
with Batchelor spectra and vertical
structure, due to conservation of
vorti city. -(e):q/? layer 1, s:jo.e, surface intensifi;d

* Vertical structure of PV




q/ W /0 relationships
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Uniform stratification:
Sinh shape (Arbic and
Flierl 2003) and 6
following the branching

Nonuniform
stratification: cloud of

points due to
shortwave instabilities.

Signatures of local
dispersive turbulence
in the upper layer and
non-local dispersive
turbulence in the lower
layer.



Modal KE spectra
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(b) KE spectra, S=-2.6, equal layers
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Higher energy in the barotropic mode for uniform
stratification due to inverse cascade

Forward cascade steeper than -3 (asin 2D
turbulence) = non-locality of dispersive
processes. No flattening of spectra at high-k, as
predicted by SQG, due to low vertical resolution

For non-uniform stratification at high-k the
baroclinic modes have more energy than the
barotropic mode

Sign of the fact that at high-k the dynamics in
different layers are decoupled



PDFs of PV

(a) q PDF, layer 1, S=0, equal layers

(b) q PDF, layer 3, S=0, equal layers
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Uniform stratification

Skewed, non-Gaussian PDFs for all
values of S and at all depths



PDFs of PV

Non-uniform stratification

* For S=-0.6 (when short-wave
instabilities grow faster than long-
wave instabilities), the PDFs are
Gaussian at all depths

(a) g PDF, layer 1, S=0, surface intensified

(b) q PDF, layer 3, S=0, surface intensified
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(c) q PDF, layer 1, S=-0.6, surface intensified

(d) g PDF, layer 3, S=-0.6, surface intensified
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Vertical structure of PV fluxes
In a two layer model the constraint vig'H =0

A

i=1

Implies that the knowledge of the fluxes in one layer gives total knowledge of the
climatological fluxes.

In the three layer model the sum must be zero but the vertical structure could be non
trivial = role of non uniform stratification and short-wave instabilities trapped in the
lower interface

(c) <H, v’ q’>Vs. S, layer 1, equal layers (d) <H, v’ @'> Vs. S, layer 1, surface intensified
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Vertical structure of PV fluxes: simple scaling laws

Define (Held and O’Brien, 1992)

P Hv'q
H,v'iq',
If the fluxes are downgradient
H 1+ E
g p— S : =_19
Hy _ p
5 p
Because here F <1, We move away from marginal stability as |S|=0(1)
1
R = Az, z(1+28) i with |SI>>1
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Vertical structure of PV fluxes: results

(a) r Vs. S, equal layers
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=>» role of intermittency (e.g. non-Gaussianity)?



Passive tracer

e Passive tracer initialized as a zonal Gaussian streak in the
middle of the domain.

Tracer trapped within the
cores of the coherent

structures, at all depths.

Signature of short-wave
instabilities in layer 3.

PDFs of tracer concentration
show large deviation from
Gaussianity

In SQG the passive tracer
would have the same
distribution as the active
scalar. At the bottom it
would have a Batchelor
spectra, with filamentary
appearance

(a) c, layer 1, S=-0.6, surface intensified
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(c) c PDF, layer 1, S=-0.6, surface intensified

(b) c, layer 3, S=-0.6, surface intensified
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1)

2)

3)

Take home messages:

Role of shortwave instabilities in
preventing formation of
singularities?

PDFs of vorticity (and of passive
tracer, not shown) fall into a
Gaussian distribution only if
shortwave instabilities are
present: is it thus correct to
parameterize turbulence with
Fickian diffusion?

Role of intermittency on
meridional fluxes of PV for

i€ tratification? “Scientists confirmed today that everything
nonunitorm stratincation : we know about the structure of the

umiverse is wrongedy-wrong-wrong. "
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