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a) AMV time-series
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The Atlantic is a place of large multi-decadal variability esp. the Atlantic Multi-decadal Variability (AMV) of
sea-surface temperatures (SST) with a large range of climate impacts

e.g. Negative AMV is associated with droughts in the Sahel, linked to Ethiopian famines of the 1980s

e.g. Positive AMV is associated with increased hurricane activity in the Caribbean



EXTERNAL FORCING
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Sutton, McCarthy, Robson,
Sinha and Archibald,
submitted to BAMS

» It is widely hypothesised that ocean circulation (esp. the AMOC) controls the phases
of the AMV through control of ocean heat content

« Many other forcings have been linked with the AMV (see schematic)

« We will consider the role of the AMOC in AMV using direct observations and
reconstructions
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With the Florida Current measurements capturing the western boundary
current, the fundamental dynamic captured by RAPID is the partition

between southward flow in the gyre and southward flow in the North Atlantic
Deep Water
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Conservative Temperature

0
Less dense water on the west in
the thermocline defines

1000 southward gyre circulation

2000

More dense water on the west
defines southward flow of North
Atlantic Deep Water (particularly
of Labrador Sea water)
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0 Consaruative Temparature Not captured by satellite SSH
measurements or thermocline-only
measurements

1000
e.g. estimates based on zonal
SSH gradient (h-h,) would link
increased southward flow with
reduced density of Labrador Sea
Water

2000

Not captured with a fixed
reference level as this doesn’t
allow for shear reversal
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Measurements on one side of the

300 basin can be very misleading

e.g. climate change predicts a

=5 &P b @8 o5 general warming of the deep
Longitude ocean but what matters for the
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Large sub-annual
variability:

The first year’s
measurements from
RAPID showed that sub-
annual variability of the
AMOC encompassed
more than the full range
of the historical

Cunningham, S. A. et al. (2007).
Temporal variability of the Atlantic
meridional overturning circulation at
26.5 N. Science, 317(5840), 935-938.

measurements.
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Large sub-annual
variability:

The first year’s
measurements from
RAPID showed that sub-
annual variability of the
AMOC encompassed
more than the full range

Evidence of a
slowdown?

A decline of 0.6
Sv/year was
observed over the
first ten years.
This is ten times
larger than long

Smeed, D. A., et al.
(2014). Observed decline
of the Atlantic meridional
overturning circulation
2004—-2012. Ocean
Science, 10(1), 29-38.

of the historical term decline
measurements. predicted by the
IPCC.
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Large sub-annual
variability:

The first year’s
measurements from

RAPID showed that sub-
annual variability of the

AMOC encompassed

more than the full range

Smeed, D. A,, et al. in prep. The changed
state of the Atlantic Meridional
Overturning Circulation

Evidence of a
slowdown?

A decline of 0.6
Sv/year was
observed over the
first ten years.
This is ten times
larger than long

Latest 18 months
of data:

Statistical analysis of
the timeseries
indicates a step
change in 2008 with
the AMOC having an
average of 16 Sv

of the historical term decline before and an
measurements. predicted by the average of 18.8 Sv
IPCC. afterwards.
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Other authors have
suggested the AMOC
changed in 2005 and that
we are entering a cool
Atlantic phase with weaker
overturning

Robson, J., Ortega, P., &
Sutton, R. (2016). A reversal of
climatic trends in the North
Atlantic since 2005. Nature
Geoscience.

(°C per decade)

Latest 18 months
of data:

Statistical analysis of
the timeseries
indicates a step
change in 2008 with
the AMOC having an
average of 16 Sv
before and an
average of 18.8 Sv
afterwards.
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Was the recent
Atlantic cold blob
all due ocean-
atmosphere
fluxes?

The timescales
considered are
important

Duchez, A. et al. (2016). Drivers of
exceptionally cold North Atlantic
Ocean temperatures and their link to
the 2015 European heat wave,
Enviro. Res. Letters
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Observations: SST(K), SLP(hPa), j.n.rinds{ms"}i D siab-ocean models: SST(K), SLP(hPa), winds(ms™)
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. . . . Clement et al. (2015). Atlantic
The lack of long ocean circulation timeseries has lead to Multidecadal Oscillation without a
prominent challenges to the paradigm of ocean circulation fole for ocean cireulation,

controlling the AMV
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« We estimate the sea-level gradient as an average of the southern minus an
average of the northern gauges

« This straddles the intergyre boundary/transition region between the subtropical
and subpolar gyres
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The accumulation in time of the
sea-level index estimates heat
content. Circulation is proportional
to heat transport

In fact, it leads subpolar heat
content and the rate of change of
the AMO by 2 years

The NAO leads the sea-level
index by a year and is significantly
correlated
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Long timeseries of the NAO
and AMV exist which we can
examine to consider relative
roles of direct atmospheric and
ocean circulation influences

Multidecadal variability
dominates the AMV

Multidecadal variability is
present but weaker in the NAO

McCarthy, G. D. and Joyce, T. (in
prep), The Gulf Stream North Wall
and decadal to multidecadal climate
fluctuations
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A quasi-decadal mode is
common to the NAO and
AMV and visible in band
passed data

The relationship is inverted
pointing to the role of
ocean-atmosphere fluxes

Quasi-decadal modes have
been identified in NAO at
11 years (related to solar
forcing) and 7.7 years. And
in SST from 8.5 years to 14
years

McCarthy, G. D. and Joyce, T. (in
prep), The Gulf Stream North Wall
and decadal to multidecadal climate
[ fluctuations
[—




A positive NAO leads to cooling over the subpolar gyre due to air-

sea fluxes explaining the inverse relationship between NAO and
AMV at this frequency

The pattern of air-sea flux in this band supports this

o hy Cent prep), The Gulf Stream North Wall
o evmemrbet e and decadal to multidecadal climate
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Components with Frequencies longer than 20 years
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On longer than decadal timescales, the NAO leads the slow variation of the
AMV

The influence of the AMOC and ocean heat transport can mechanistically
explain this relationship
McCarthy, G. D. and Joyce, T. (in

gational - prep), The Gulf Stream North Wall
ceanography S elitve and decadal to multidecadal climate
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Sutton, McCarthy,
Robson, Sinha,
Archibald, submitted
to BAMS

» Up to decadal timescales, SST variability can be explained by air-
sea fluxes

» On multi-decadal timescales, the ocean integrates NAO forcing
and changes the AMOC
» This generates the AMV pattern
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Direct observations of AMOC from RAPID and indirect estimates (such as Labrador Sea density)
suggest we are entering a cool phase of the AMV

Results point to a key role for NAO forcing in this cycle with direct air-sea fluxes explaining up-to-
decadal variability and NAO influence on the AMOC dominating on multidecadal timescales

A key challenge is to keep observing systems in the water long enough to reveal this variability
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