

Hadley Centre

An anatomy of the projected North Atlantic warming hole in CMIP5 models

Matthew Menary, Richard Wood LEFE, Brest, 3/5/17

Paper in review in Climate Dynamics

© Crown Copyright 2016, Met Office

×102

www.metoffice.gov.uk

Contents

- Introduction
 - Competing hypotheses
- Models/data used
- The Warming Hole (WH)
 - Heat budget
 - AMOC
 - "Salinity hole"
 - Time evolution
- Summary

www.metoffice.gov.uk

Considerable model of versity in torizontal/vertical structure of the VMH Bolt historical-mass and tahino-changes in 1994: an generality downolewary of the VMH location


feat budget consistent with a significant role for 7 No is another of the simultaneous solinity hole

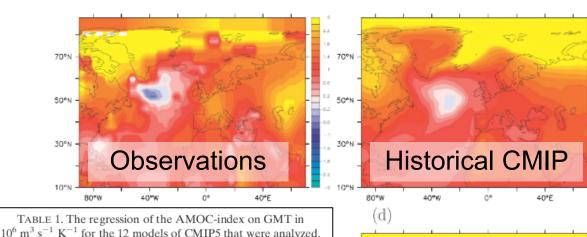
Summary

Summary

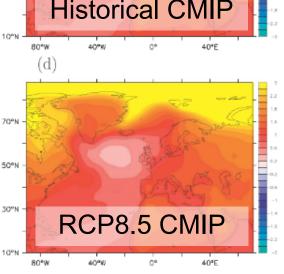
- Considerable model diversity in horizontal/vertical structure of the WH
- Both historical-mean and future-changes in DWF are generally *downstream* of the WH location
- Heat budget consistent with a significant role for AMOC
- As is analysis of the simultaneous salinity hole
- The AMOC upper limb is projected to weaken and shallow into the future, despite considerable model diversity in the mean state structure
- The temporal evolution of the AMOC upper limb depth and depth structure of the WH are further consistent with a significant role for the AMOC (*cf.* animation)

Hadley Centre

Intro: The warming hole (WH)


Drijfhout (2012) linked WH to AMOC decline via multiple linear regression on to surface air temperature (SAT)

But complicated by degenerate patterns and trends


Mixing? Surface fluxes? Ocean heat transport? Consistent across models?

www.metoffice.gov.uk

Model	Historical	RCP2.6	RCP4.5	RCP8.5	
CanESM2	0.60	-0.80	-0.78	-0.72	
CCSM4	-0.90	-1.44	-1.51	-1.52	
CESM1-CAM5	-0.05	-2.23	-2.14	-1.81	
CNRM-CM5	-0.98	-1.47	-1.24	-1.02	
FGOALS-g2	0.35	-2.76	-2.16	-1.54	
FGOALS-s2	-1.00	-3.00	-2.86	-2.03	
GFDL-CM3	0.63	-2.84	-2.48	-2.11	
GFDL-ESM2M	-1.37	-3.15	-3.13	-2.80	
MPI-ESM-LR	-0.48	-1.53	-1.46	-1.17	
MPI-ESM-MR	0.31	-1.03	-1.11	-1.00	
MRI-CGCM3	-0.04	-0.88	-0.74	-0.92	
NorESM1-M	0.89	-1.78	-1.88	-1.94	
Ensemble mean	-0.4 ± 0.8	-1.9 ± 0.8	-1.8 ± 0.8	-1.5 ± 0	

"Is a decline of AMOC causing the warming hole above the high latitude North Atlantic ocean" Drijfhout et al., *J. Clim.* (2012) © Crown Copyright 2016, Met Office

Models/data

Institute

Model

This study

- 41 models
- 25 with March \bullet mixing data
- 19 with AMOC ightarrowdata
- 17 with heat budget data

MeLOffice	North Atlantic warming hole
and a second second	भारत होता होता होता होता होता होता.
	And And And And And And And
top soom slobal mean	🔤 🎾 🌿 🌿 💯 🎾 🌌
	- 19 19 19 19 19 19 19
	💓 💓 😿 🍱 🌫 ጆ
	25 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	(2070->2100) - (1800->2000)

institute	Model	unctao			msity yz or		
(CMIP5 name)	(CMIP5 name)	and so	mlotst	omlmax	msftmyz	hfy	hfds
BCC	bcc-csm1-1	Х	-	-	-	-	X
BCC	bcc-csm1-1-m	X	-	-	-	-	X
BNU	BNU-ESM	X	-	-	-	-	X
CCCma	CanESM2	X	X	X	X	-	-
CMCC	CMCC-CESM	X	-	-	-	X	X
CMCC	CMCC-CM	X	-	-	-	X	X
CMCC	CMCC-CMS	X	-	-	-	X	X
CNRM-CERFACS	CNRM-CM5	X	X	X	X	-	-
CSIRO-BOM	ACCESS1-0	X	X	X	X	X	X
CSIRO-BOM	ACCESS1-3	X	X	X	X	X	X
CSIRO-QCCCE	CSIRO-Mk3-6-0	X	X	-	-	-	X
FIO	FIO-ESM	X	-	-	-	-	X
ICHEC	EC-EARTH	X	-	X	-	-	X
INM	inmcm4	X	X	-	X	-	X
IPSL	IPSL-CM5A-LR	X	-	X	-	X	-
IPSL	IPSL-CM5A-MR	X	-	X	-	X	-
IPSL	IPSL-CM5B-LR	X	-	X	-	X	-
LASG-CESS	FGOALS-g2	X	-	-	X	-	X
MIROC	MIROC-ESM	X	-	-	-	-	X
MIROC	MIROC-ESM-CHEM	X	-	-	-	-	-
MOHC	HadGEM2-CC	X	X	-	x	x	X
MOHC	HadGEM2-ES	X	X	-	X	X	X
MOHC (non-CMIP5)	HadGEM3-GC2	X	X	-	X	x	X
MPI-M	MPI-ESM-LR	Х	Х	X	X	X	Х
MPI-M	MPI-ESM-MR	X	X	X	X	x	X
MRI	MRI-CGCM3	Х	Х	X	X	X	Х
MRI	MRI-ESM1	х	х	х	х	x	х
NASA-GISS	GISS-E2-H	X	-		-		-
NASA-GISS	GISS-E2-H-CC	X	-	-	-	- I	-
NASA-GISS	GISS-E2-R	x	-	-	-	x	X
NASA-GISS	GISS-E2-R-CC	x	-	-	-	x	x
NCAR	CCSM4	X	-	x	x	-	-
NCC	NorESM1-M	x	X		X	x	х
NCC	NorESM1-ME	x	x	_	x	x	x
NIMR-KMA	HadGEM2-AO	x	-	_	-	-	-
NOAA-GFDL	GFDL-CM3	x	х	x	х	x	-
NOAA-GFDL	GFDL-ESM2G	x	-	x	-	x	x
NOAA-GFDL	GFDL-ESM2M	x	x	x	x	x	-
NSF-DOE-NCAR	CESM1-BGC	x	-	x	x	<u> </u>	
NSF-DOE-NCAR	CESM1-CAM5	x	-	x	-		
NSF-DOE-NCAR	CESM1-WACCM	x	-	-	-		-
Nor DOE-NOAN	OLSMI-WACOM	л	-	-	-	-	-

thetao

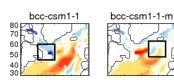
www.metoffice.gov.uk

© Crown Copyright 2016, Met Office

msftyyz or

North Atlantic warming hole

BNU-ESM


ACCESS1-3

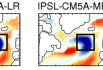
IPSL-CM5B-LR

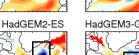
MPI-ESM-LR

GISS-E2-R-CC

Top 500m minus global mean

70

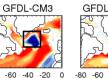

50

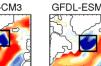

70

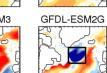
50

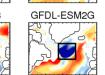
70

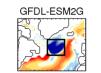
50

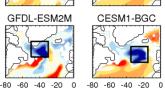












-2.5

-1

(2070 - 2100) - (1850 - 2000)

Ω

CCSM4

CanESM2

CSIRO-Mk3-6-0

FGOALS-q2

MPI-ESM-MR

-80 -60 -40 -20

1

0

1.5

-80 -60

2

2.5

NorESM1-ME

CMCC-CM

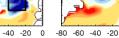
EC-EARTH

MIROC-ESM-CHEM

MRI-ESM1

CMCC-CMS

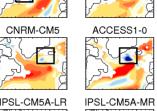
inmcm4


HadGEM2-CC

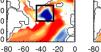
GISS-E2-H

HadGEM2-AO

0



Temperature profiles of WH



-2

-1.5

-0.5

0.5

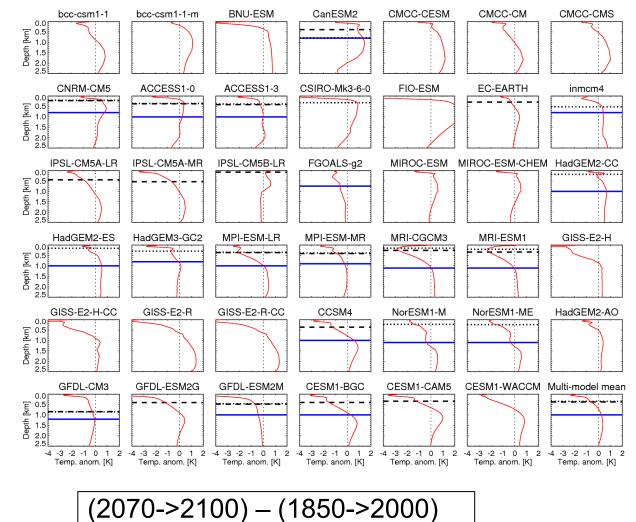
CMCC-CESM

FIO-ESM

MIROC-ESM

MRI-CGCM3

NorESM1-M

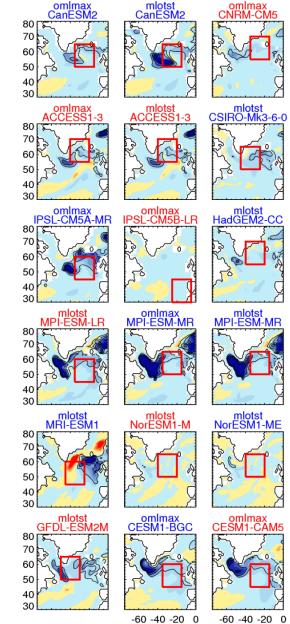

WH region: Temperature profile minus global mean profile

Horizontal black March mixed layer depth

Horizontal blue AMOC upper branch depth

Temperature profiles of WH

www.metoffice.gov.uk

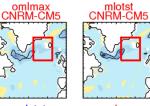


Mixed layer depths

Mixed layer depth changes and location of WH (red bo)

Generally downstream

-1200

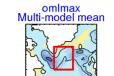

-1000

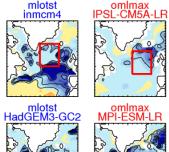
-800

-600

-400

-1400




-60 -40 -20

0

-200

0

200

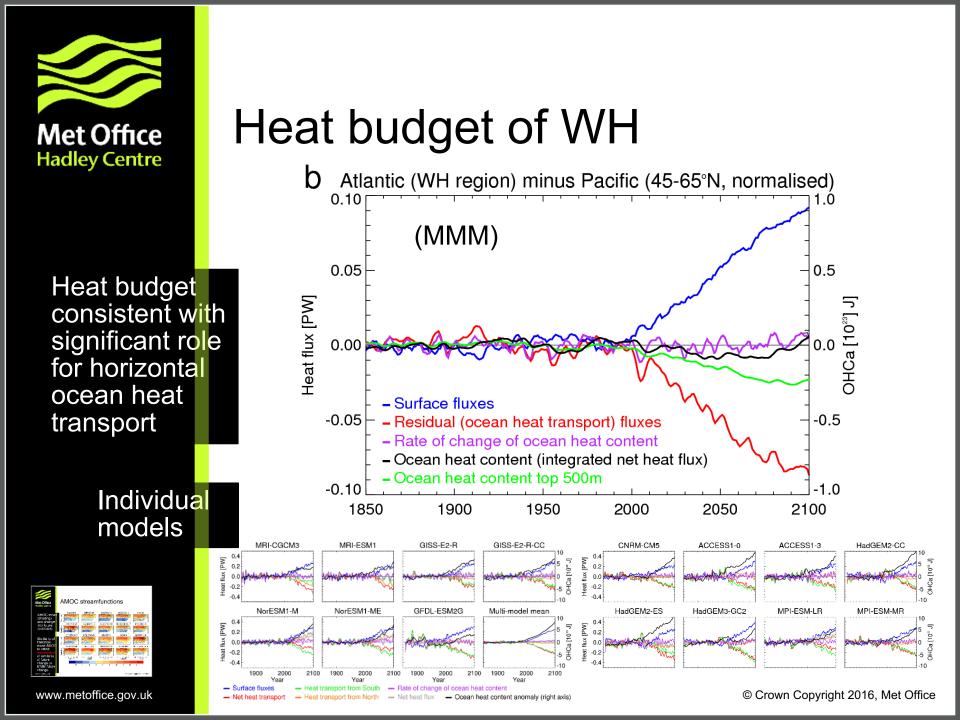
omlmax ACCESS1-0

mlotst

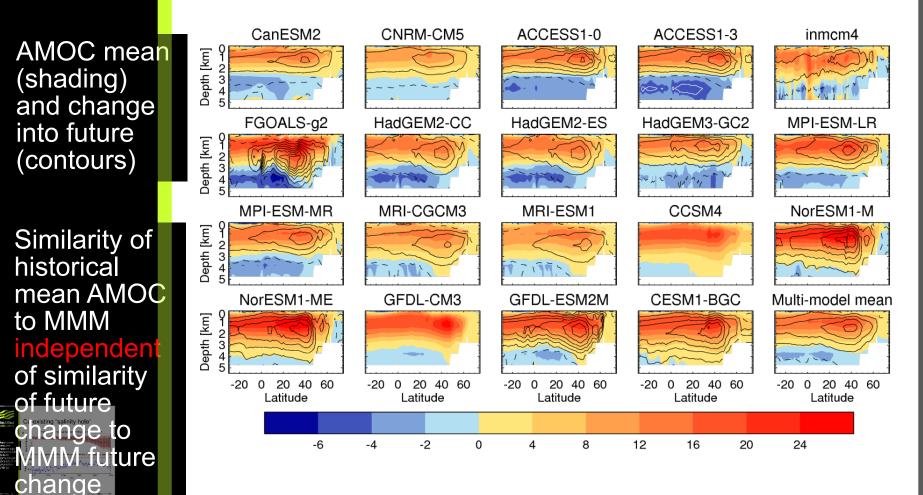
mlotst MRI-CGCM3

omlmax GFDL-ESM2G

mlotst ACCESS1-0

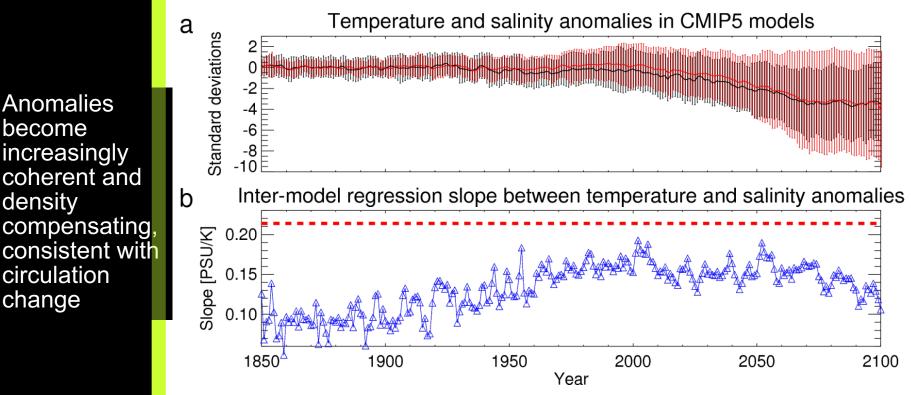


400 600 © Crown Copyright 2016, Met Office

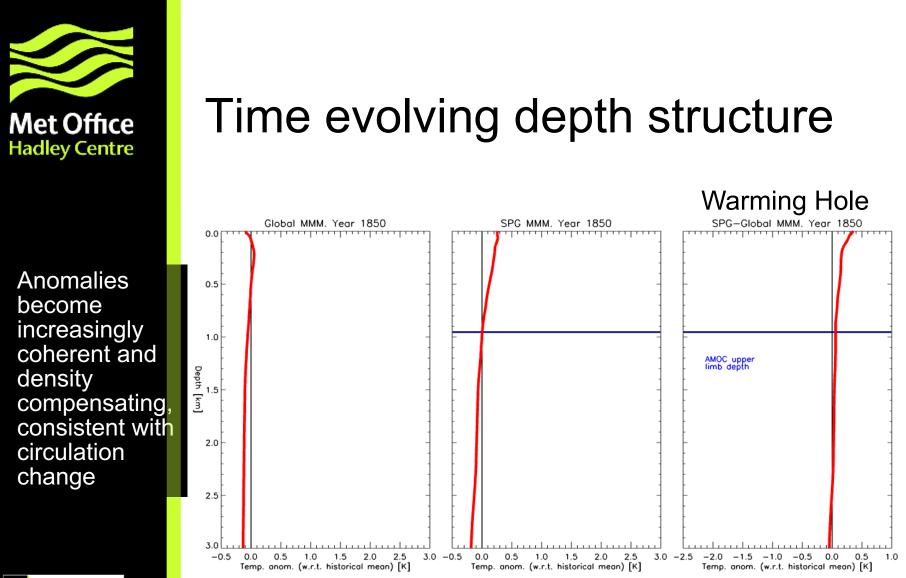

www.metoffice.gov.uk

Met Office Hadley Centre

AMOC streamfunctions



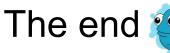
become


density

change

Co-existing "salinity hole"

© Crown Copyright 2016, Met Office



Summary

- Considerable model diversity in horizontal/vertical structure of the WH
- Both historical-mean and future-changes in DWF are generally *downstream* of the WH location
- Heat budget consistent with a significant role for AMOC
- As is analysis of the simultaneous salinity hole
- The AMOC upper limb is projected to weaken and shallow into the future, despite considerable model diversity in the mean state structure
- The temporal evolution of the AMOC upper limb depth and depth structure of the WH are further consistent with a significant role for the AMOC (*cf.* animation)

