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Strength of AMOC is determined
both by thermodynamic and
mechanical effects



AMOC strength
increases with strength
of buoyancy source

GCM world:

Swingedouw et al. (2007)

L
- =
alfl 2 Wi " a) Convection sites region
B H
S il
-% - -4 L o
Destabilizing Stabilizing
buoyancy input buoyancy input

b)
0.0 -
B —4.0 -
Hughes GO, Griffiths RW. 2008.
X/ Annu. Rev. Fluid Mech. 40:185-208 B

Laboratory Experiments 0% 02 | -gi0 | 0% o



Bryan (JPO, 1987): Thermocline depth
and AMOC strength increase with
vertical diffusivity
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FIG. 4. Dependence of thermocline e-folding scale depth on . | . - .
vertical diffusivity at sel 1 latitodes. FiG. 8. Dependence of mernidional overturning streamfunction

on vertical diffusivity.

Vertical mixing Is primarily driven by winds and tides,

hence mechanically-driven




JR Togoweieer and B. SaMurs

MERIDIONAL OVERTURNING - ATLANTIC BASIN

Drake Passage Eftect

Toggweiler and Samuels (1993)

Strength of AMOC
appears to linearly
increase with
strength of zonal
wind at altitude of
Drake Passage

LATITUDE

Fig. 3. Meridional overturming in the Atlantic basin from the 0.5 (1op), 10X (middie) and §.$x

(bottom) wind sensitivity experiments, The flow between stream lines is 2 Sv. The outflow of deep

water (of North Atlantic origin) through the South Atlantic scales with the wind stress applicd

south of MrS. The model's outflow is indicated by the bracketed streamlines between roughly 1300
and 2600 m,
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Buoyancy-Driven or Mechanically-Driven?

What about
Mechanically-controlled buoyancy-driven
circulation??

Tailleux (2009); Tailleux and Rouleau (2010)



The same value of potential energy (PE) may

reveal very different situations

(a) (b)

P=p,—Ap P=P, AP

P=P, P=P,
No available PE Some Available PE
PE = PEr + APE Hughes et al., (JPO, 2009)

Lorenz (1955) theory of available potential energy



Boussinesq Momentum Equations
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Wind-driven route
versus
buoyancy-driven route

Gregory and lailleux (201 1)
Clim. Dyn.

\

dense

light

Wind-driven route

B<0

KE

APE

D(APE)

heating
—J YL
IightJ

dense

Buoyancy-driven route

B>0 APE




Energetics: Filter out Coriolis

Multiply by horizontal velocity
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From Gregory and Tailleux, 201 |
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Isolation of the wind forcing and viscous dissipation
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Isolation of the buoyancy forcing and mixing?

0
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Buoyancy-driven theory seeks to link pressure
gradient work to surface buoyancy fluxes and
interior mixing processes



Local Detinition of Available Potential Energy = Work of
buoyancy force from rest state to actual state = quadratic
positive definite for small amplitude
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State Dependent
Wind and Buoyancy Forcing

Wind Forcing depends on Ocean Surtace Velocity

G(KE) = j j u +7 dxdy
S

Buoyancy Forcing depends on Lorenz Reference Depth
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Buoyancy-Driven Theory of the AMOC

Unknown Proportionality Factor

Y voc = Kastaniic _” 8%y dxdy
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Lorenz (1955) theory of available potential
energy and its moist extension (1978,1979)
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Energy Generation(W)
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Seasonally averaged APE From Zemkova et al. (JPO, 2015)
generation rate from ECCO2
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Increasing Mixing controls
G(APE) through increasing
thermocline depth
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Bryan (JPO, 1987): Thermocline depth
and AMOC strength increase with
vertical diffusivity
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FIG. 4. Dependence of thermocline e-folding scale depth on . | . - .
vertical diffusivity at sel 1 latitodes. FiG. 8. Dependence of mernidional overturning streamfunction

on vertical diffusivity.

Vertical mixing Is primarily driven by winds and tides,

hence mechanically-driven




Whitehead and Wang (JPO,2008)
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Increase In zonal wind at Drake Passage
increases net heating over ACC, which in
steady state requires increasing net
cooling in Northern Polar Regions thus
increasing G(APE) and AMOC
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Figure 3. (a) Annual-mean heat flux for the case of no
wind stress over the Southern Ocean. Each bex shows heat
absorbed by the ocean in the latitudinal band indicated by
the width of the box. Contribution of each oceanic basin is
shown by color bars. (b) Anomaly from (a) for the control
case.

GEOPHYSICAL RESEARCH LETTERS, VOL. 26, NO. 13, PAGES 1873-1876, JULY 1, 1999

Atlantic deep circulation controlled by heating in the

Southern Ocean

Hiroyasu Hasumi and Nobuo Suginohara
Center for Climate System Research, University of Tokyo, Japan

Abstract. Thermohaline circulation has been considered
to be driven by localized buoyancy loss through the sea sur-
face at high latitudes and broadly distributed buoyancy gain
elsewhere. Our numerical modeling study, however, shows
that buoyancy gain for the Atlantic deep circulation is local-
ized in the Southern Ocean. Wind-induced upwelling there
causes efficient heat transfer to the deep ocean, and controls
intensity of the Atlantic deep circulation as thermohaline
circulation.

buoyancy loss of North Atlantic Deep Water (NADW) in
the northern North Atlantic and buoyancy gain somewhere
else. Here we try to answer this question by carrying out
numerical experiments.

Model and Experiments

The OGCM used in this study is CCSR-OGCM [Hasumi
and Suginohara, 1999a] with the Uniformly Third-Order
Polynominal Interpolation Algorithm (UTOPIA) [Leonard

Hasumi and Suginohara (1999)




Climate Change
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Conclusions

* Buoyancy-driven theory posits that AMOC strength
proportional to APE production rate by high-latitude
cooling. Physics of proportionality constant not really
understood though: research needed!

* APE production rate is state dependent. Ocean is a
mechanically-controlled heat engine. Mixing and winds
helps buoyancy forcing out.

* Determination of ocean stratification as important as
determination of formation rates for inferring past AMOC
variations



