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In the beginning...
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During the latter part of May and June, 1976, the R,V. Atlantis II

ceccupied a section along 53°E in the western Indian Ocean extending from
D’hj*S to 5°N latitude. The observations consisted primarily of time series
of vertical profiles of horizZontal wvelocity, extending from the ocean surfac=
to the bottom. A number of the results from these measurements, although not

completaely unexpected, are novel,



Nine velocity profiles that changed the world...

Eastward components of velocity in vertical profiles at 0% 53°E
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1976 zonal velocity profiles analyzed
by O'Neill and Luyten (1984)

 One month, two latitudes
* One section, 6 latitudes

 Small vertical scale near the
equator

e Persistent in time

« Larger vertical scale at higher
latitudes

lﬂw

FIG. 1. Bathymetric map of the western equatorial Indian Ocean,
showing the location of the 1976 White Horse profiling stations.
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FIG. 1. (a) Time series of zonal velocity profiles from 0°, 53°E spanning 16 May-17
June 1976; (b) time series of same from 0°45'N, 53°E spanning 17 May-17 June; (c)
latitudinal section of zonal velocity from a transect along 53°E from 0°45'S to 5°N.



1979: More profiles in the western |O

Mentioned by Luyten, Fieux, and Gonella
(1980)

Analyzed by Ponte and Luyten (1990)
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Fig. 2. Zonal velocity along the equator, measured during (a) April 1979 and (b) June 1979,
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Meanwhile, in the Western Pacific...

30°N

1978, 25 profiles

168°E and 175°E
Sparse latitude sampling
Eriksen (1981)
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And in the Eastern Pacific...

1979
4 profiles at 110°W, Equator
Hayes and Milburn (1980)
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FiG. 1. Four vertical profiles of horizontal velocity at 0°2.5'N, 109°58'W
collected over a 27 h period. Total water depth was 3800 m.



Eastern and Central Pacific, a transect along the Equator

7 profiles in 1980
159°W to 125°W

Leetmaa and Spain (1981) IS9°W_I55°  I50° 145° 140° 135° 130° (25°W__

- ; 5 o — 300

= - 600

2 r —900
[M]
-
w

z L {1200
I
e

e I 1500

- —1800

- 2100

FiG. 4, Zonal velocity profiles between 159 and 125°W. The velocity scale is
50 cm s~ between 5° of longitude, i.e., between vertical lines. Velocities in the top
200 m were omitted because of the large values in the undercurrent.



Central Pacific: a 16-month time series

21 cruises, 41 sections
3°S to 3°N, every 0.5°
Complicated by 82-83 El Nino
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Figure 3. Average (a) and standard deviation (b) of the zonal current component during the 16
months of observations. Contours are on integral multiples of 10 c¢m/s, and there are
additional contours at £2.5 and +5 cm/s. Westward flow is shaded.
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Figure 2. Pegasus current profile times and latitudes.

Described by Firing (1987, 1989)
Lack of unambiguous EDJ vertical

MARCH 1982 THRU JUN 1983

propagation.

Directed attention to the off-
equatorial currents with larger
vertical scale.
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16-month mean « at 159" W
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Atlantic: observations lagged

Eriksen (1982) inferred the existence of
EDJ structure from sparse CTD data
(GEOSECS program).

Ponte, Luyten, Richardson (1990)
reported EDJ structure from a single
Equatorial velocity profile.



What we knew in 1990 from observations:

« Small vertical scale zonal flows (“Equatorial Deep Jets” or
EDJs) are found in Indian, Pacific, Atlantic

» Central Pacific: Larger vertical scale zonal flows alternate
with latitude ("Equatorial Intermediate Currents” or EICs)

» Central Pacific.: EDJs and EICs persist over 16 months

e EDJ zonal scale: at least 10° in central Pacific

Notice how much we didn't know.



Theory in 1990:

e Mainly focused on EDJ
« Based on linear equatorial wave dynamics
- Kelvin wave, speed c_to the east

- Long Rossby wave, speed <= c /3 to the west
e Low frequency — energy propagation is nearly horizontal

What makes the waves?

Direct periodic wind forcing?
* Wunsch (1977)

* McCreary (1984)
 McCreary and Lukas (1986)

Thermohaline forcing?
« Kawase (1987)
* Ponte (1989)



Direct periodic wind forcing?
* Wunsch (1977)

* McCreary (1984)

* McCreary and Lukas (1986)

No good:

very low (but unknown) frequency of EDJ
— very shallow ray angles,

— too many boundary reflections

— too much dissipation

Gent and Luyten (1985) overstated the importance of
energy reflection by thermocline?
See Rothstein, Moore, McCreary (1985)



Thermohaline forcing?

» Kawase (1987) fundamentals in reduced gravity model
» Ponte (1989) specific to EDJ generation

Questionable: would require very small vertical scales in
WBC.



Theory in 1990:
What about the EICs?
The relevant section from our proposal:

2.2.2 Deep extra-equatorial currents

The situation is simple: there are no models, analytic or
numerical, of the deep extra-equatorial currents.



Lien's plunge into the equatorial depths:

NSF proposal with Lien, Dennis Moore, and me (UH), and
Lew Rothstein (URI), in 1990

Hypotheses:
 Thermohaline, driven from the western boundary
* Indirectly wind-driven via nonlinear interaction of high-

frequency motions excited by the wind or by instabilities
of the mean wind-driven currents



Lien's first approach: inertial instability

Presented in Hua, Moore, and Le Gentil (1997)
Initial value problem

2-D, latitude-depth

Detailed analytic treatment, Couette flow context

High-res nonlinear, nonhydrostatic numerical solution



Subsequent work by Lien et al. on EDJ, EICs:
* 3-D

» Unstable mixed Rossby-gravity (MRG) waves and short
Rossby waves from the western boundary.

d'Orgeville, Hua, and Sasaki (2007)

Hua, d'Orgeville, Fruman, Menesguen, Schopp, Klein,
Sasaki (2008)

Menesguen, Hua, Fruman, and Schopp (2009):
simultaneous generation of EDJ and EICs in a numerical
model.



What have we learned from observations since 19907

EICs are basin-scale in Atlantic and Pacific.

EIC-like alternating structure extends poleward 10° or
more.

EDJs propagate phase downward in Atlantic (4.5-year
period), probably also in the Pacific, but much slower
(30-year period?).

The Indian Ocean is very different; but observations are
few.



Shipboard ADCP

75 kHz, 38 kHz

2004-2012
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mean U, N=15, 165E
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Global view: ARGO drift velocities
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Atlantic, 23°W Brandt et al., 2011
Moored profiler
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Indian Ocean:

ARGO: “no coherent zonal features” (Cravatte et al.,
2014; also Brandt et al., 2011)

WOCE LADCP sections:

 Small scales on Equator have much shorter time
scales than in Atlantic and Pacific
* No indication of mean EIC-type structure

Poor sampling compared to Atlantic and Pacific;
dominant annual and semiannual variability.



Theory and modeling: other progress
EICs generated by Yanai beam (Ascani et al., 2010)

EDJ basin modes in a wind-driven model (Ascani et
al., to be submitted soon)

In both cases, intra-seasonal variability (ISV) is
central.

Emphasis:

e balance in quasi-steady state

ISV from instability of wind-driven upper ocean mean
circulation



Yanai (MRG) beam

* From Tropical Instability Waves

» Dissipation modifies PV: essential for zonal flow west of
the beam
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FIG. 5. Standard deviation (STD) of equatorial v in (a) the 198 model during years 20-22 and
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|dealized wind-driven Atlantic with EDJ basin modes and EICs
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Vertical propagation?
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Observations compared to OGCMs: 2 examples
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Conclusions and questions:

1) Idealized models show how intra-seasonal variability can
drive features resembling EDJs and EICs.

2) We still don't have adequate sampling of intra-seasonal
variability or of the mean and low frequencies.

3) OGCMs still do not simulate observations well. Why not?
4) Why do models seem to need to be overdriven?

5) Why is there apparently net upward energy propagation of
the EDJs?

6) Why do present simplified models fail to capture the full
meridional extent of the system of EICs?

The equatorial subthermocline circulation remains a challenge!



