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Dissipation rate versus Reynolds
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Both laboratory experiments and
numerical experiments of turbulent flows
show that the dissipation rate
becomes independent of the fluid viscosity



What is the inviscid limit of Navier-Stokes?

Navier-Stokes equations with f?
no-slip boundary conditions:

Navier:Stokes
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Well posedness of Navier-Stokes and Euler

* In 2D open space (without wall),
— for smooth initial data, Euler and Navier-Stokes equations
are well posed (long time existence and uniqueness),
— the Navier-Stokes equation is well posed in L? (energy norm),
— the Euler equation is well posed for bounded vorticity,

— for Euler equation, many open questions for cases with
unbounded vorticity.

* In 3D open space (without wall),
— for smooth initial data, both problems are well posed,
at least for a short time,

— the Navier-Stokes equation admits a weak solution for all time,
but uniqueness is an open question,

— for Euler equation even existence is an issue for long times.

* In 2D and 3D confined space (with walls),
the problem is still fully open for Euler and Navier-Stokes!



What is the problem with walls ?

, Y Uy

»
>

m

No-slip b.c. Slip b.c.

* The wall imposes a strong tangential constraint
on Navier-Stokes viscous flows,
* No boundary condition affects the tangential velocity
for Euler inviscid flows.
. Navier's b. c. (1822) : Uz + aO0yuy =0
Uz slip velocity & slip length OyUz wall shear



Dissipation of energy in the inviscid limit

What happens forv - 0?
@ In an incompressible flow (p = 1)

2
Ccll_f:% u?z—l//w2=—21/z

o To dissipate energy, vorticity needs to be created and/or amplified, in

such a way that Z ~ 1.

Possible vorticity distributions:
w ~ 1712 over O(1) area,
w ~ v~ over O(v) area.

E energy, Z enstrophy,

V fluid kinematic viscosity
w flow vorticity.




Why is dissipation of energy so essential ?

« Kato (1984) proved (roughly stated):

The NS solution converges towards the Euler solution in L2
(t) = u(®)] 2 gy = O,

if and and only if
the energy dissipation during this interval vanishes:

AE, (0,T) =Re™ f dt f dx|[Vu(t,x)] —

R—bx

and even if and only if
it vanishes in a strip of width prop to Re"! around the solid:

Re™ f dt f dxVutx)’ -0, T ={x\d(x,asz)<cRe—l}.
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An important practical consequence

* To have any chance of observing energy dissipation
(i.e. default of convergence towards the Euler solution),
we need a smaller grid than Prandtl’s (1904) prediction
for attached boundary layers:




Volume penalization method

» For efficiency and simplicity, we would like to stick to a
spectral solver in periodic, cartesian coordinates.

e as a counterpart, we need to add an additional term in
the equations to approximate the effect of the

boundaries,
« the geometry is encoded in a mask function X |
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Wall-bounded 2D turbulent flow
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DNS of 2D confined flow
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Dipole impinging on a wall at Re= 2500




Dlpole-wall colllsmn at Re=8000
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Dipole-wall collision
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Energy dissipation

Energy dissipated
during the dipole-wall collision for

Increasing Reynolds numbers
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What are dissipative structures ?

* Our experiments with the dipole-wall collision
suggest that the flow remains dissipative in the

inviscid limit,
* |t is tempting to relate these structures to energy
dissipation, 5
u

* the kinetic energy density ¢ = o obeys:

_____________

_____________

Local dissipation rate



DNS of dipole crashing onto a wall

: Nguyen van yen, M. F.
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Dipole-wall collision at Re=8000
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Dissipative structures
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Snapshot of the local dissipation rate
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Local dissipation rate
for the dipole-wall collision
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The strongest values of
the energy dissipation
rate is observed inside
the main vortex that
detached from the
boundary layer,

rather than inside the
boundary layer itself.
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PRL, 106(18)



Production of dissipative structures

energy dissipation rate

Ssipation rate
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Euler-Prandtl Navier-Stokes
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Prandtl’s singularity

Prandtl equation has well-known finite time singularity

o |Oxwi1| and uy,y blows up,
e wi remains bounded.
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Prandtl solution’s blow-up

maximum vortidty

According to Kato's theorem, and since w; remains bounded
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Prandtl solution blows up at t,

maximum vortidty

According to Kato's theorem, and since w; remains bounded
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Navier-Stokes solution converges towards Euler’s solution
for v = 0 until t; when the bounday layer detaches




What happens after the singularity?

maximum vorticity

Maximum of vorticity
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Conclusion

The production of dissipative structures is a key feature of fully-
developed turbulent flows due to boundary layer detachment.

Prandtl solution becomes singular when boundary layers detach.

The viscous Navier-Stokes solution converges uniformly
to the inviscid Euler solution for t<ty, following Prandtl’s scaling
as Re"? but ceases to converge for t>t.

The detachment process involves spatial scales
in different directions, and not only parallel to the wall,
as fine as Re' following Kato’s scaling.




Open questions

Numerical results suggest that a new asymptotic description
of the flow beyond the breakdown of the Prandtl regime is possible,

and studying it might help to understand the observed scalings.

Here are few open questions related to this:

- Would Navier-Stokes solution loose smoothness after t,
and converge to a weak singular dissipative solution

of Euler's equation, as suggested by Leray in 19347
- How can such a weak solution be approximated numerically?




Open mathematical question since 1847

On 16 May 1748 Euler, president of the Prussian
Academy of Sciences, read the problem he proposed
for the Prize of Mathematics to be given in 1750 :

'Theoria resistentiae quam patitur corpus in fluido
motum, ex principiis omnino novis et simplissimis
deducta, habita ratione tum velocitatis, figurae,

et massae corporis moti, tum densitatis
& compressionis partium fluidi',

Six mathematicians, including d’Alembert, sent a manuscript,
but Euler was not satisfied and postponed the prize.

Grimberg, D’Alembert et les équations
aux derivees pattielles en hydrodynamique,
Thése de Doctorat, Université de Paris VII, 1998



Jean Le Rond d’Alembert Leonhard Euler
(1717-1783) (1707-1783)




D’Alembert’s paradox

D’Alembert was upset and decided to translate his latin
Manusorlpt of 1749 and publish it in French in 1752
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It seems to me that the theory, developed in all
possible rigor, gives, at least in several cases, a
strictly vanishing resistance, a sinqular paradox

which I leave to future geometers to elucidate.’




How do Navier-Stokes solutions behave?

This is still an open problem
== Clay Prize of Mathematics, 2000 :

‘The challenge is to make substantial progress
toward a mathematical theory which will unlock

the secrets hidden in the Navier-Stokes equations.’

Millennium Prize Problems [ng = Are there finite time
- singularities? |
| For Euler | For Navier-

P versus NP
The Hodge Conjecture Stokes
The Poincaré Conjecture _jaa |
The Riemann Hypothesis :
Yang-Mills Existence and Mass Gap
Mavier-Stokes Existence and Smoothness

The Birch and Swinnerton-Dyer Conjecture
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