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Lien’s legacy

» A life of passion: for science, for her family,
& for her colleagues — the young &
the young in spirit.

> Rigor & enthusiasm, a broad perspective
& a great respect for detail.

» A mastery of the essentials: theory,
observations, & high-end modeling.

Mid-latitude oceanic flows

» East-West flows alternating with latitude;
* quasi-barotropic (surface-intensified) zonal jets.

Nonlinear dynamics of zonal jets in
planetary atmospheres and oceans

1—year Mean Zonal Velocity at 400—m Depth
OFES model

MOMS3 Earth Simulator
(1/12°; 54 levels)
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Lien & | Zhao & Ghil (JAS, 1991)

Nonlinear Symmetric Instability and Intraseasonal Oscillations
in the Tropical Atmosphere

J.-X. ZHAO AND M. GHIL

Climate Dynamics Center, Department of Atmospheric Sciences and Institute of Geophysics and Planetary Physics,
University of California, Los Angeles, California

(Manuscript received 18 June 1990, in final form 24 March 1991)

ABSTRACT

Symmetric inertial instability (SII) is studied here as a mechanism for stratospheric and troposphernic phenomena
in the equatorial regions. We investigate the linear and nonlinear dynamics of SII in a two-layer, zonally
symmetric model on an equatorial beta plane, in the presence of a basic flow with horizontal and vertical shear,
with and without dissipative effects.

Linear symmetric instabilities are, in accordance with previously published results, purely exponential, that
is, nonoscillatory. Nonlinear SII, studied here for the first time on a planetary scale, can produce finite-amplitude
oscillatory behavior, periodic or chaotic. The period of oscillations in the inviscid case depends on the initial
data. In the presence of dissipative effects, all solutions tend to a limit cycle or to a strange attractor. The
dominant period in this case, over a wide range of parameters and whether vertical shear is present or not, is
in the intraseasonal, 20-30-day range. [t appears therefore that nonlinear SII might be a contributing mechanism
to low-frequency oscillations in the tropical atmosphere.



Motivation
e The IS highly quite

 The system’s major components — the atmosphere, oceans,
ice sheets — evolve on many time and space scales.

o lts predictive understanding has to rely on the system’s
physical, chemical and biological modeling,

but also on the thorough mathematical analysis of the models
thus obtained: the forest vs. the trees.

 The hierarchical modeling approach allows one to
give proper weight to the understanding provided by the
models vs. their realism: back-and-forth between
“toy” (conceptual) and detailed (“realistic”) models,
and between models and data.

 How do we disentangle natural variability from the
anthropogenic forcing. can we & should we, or not?



Climate and Its Sensitivity

Let’s say CO, doubles:

How will “climate” change?

. Climate is in stable equilibrium

(fixed point); if so, mean temperature

will just shift gradually to its new
equilibrium value.

. Climate is purely periodic;
if so, mean temperature will
(maybe) shift gradually to its
new equilibrium value.

But how will the period, amplitude
and phase of the limit cycle change?

. And how about some “real stuff”
now: chaotic + random?

Ghil (in Encycl. Global Environmental

Change, 2002)
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Outline

 The IPCC process: results and uncertainties

* Natural climate variability as a source of uncertainties
— sensitivity to initial data =» error growth
— sensitivity to model formulation =» see below!

 Uncertainties and how to fix them

— structural stability and other kinds of robustness
— non-autonomous and random dynamical systems (NDDS & RDS)

« Two illustrative examples

— the Lorenz convection model
— an El Nino—Southern Oscillation (ENSO) model

* Linear response theory and climate sensitivity
« Conclusions and references

— natural variability and anthropogenic forcing: the “grand unification”
— selected bibliography
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Temperatures and GHGs

Greenhouse gases (GHGs) go up,

temperatures go up:

It's gotta do with us, at least a bit,
doesn’t it?

Temperature Anomaly (°C)

Wikicommons, from

Hansen et al. (PNAS, 2006);

see also http://data.giss.nasa.gov/
gistemp/graphs/
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Uniforiunztely, tnings
|

s

Try to achieve better
interpretation of, and

agreement between,
models ...

Ghil, M., 2002: Natural climate variability,
in Encyclopedia of Global Environmental
Change, T. Munn (Ed.), Vol. 1, Wiley

Natural variability introduces additional complexity into
the anthropogenic climate change problem

The most common interpretation of observations and
GCM simulations of climate change is still in terms
of a scalar, linear Ordinary Differential Equation (ODE)

g k= Z k. —|feedbacks (+ve and -ve)
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Linear GHG effect |
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Timz (years)
Linear response to CO, vs. observed change in T

Hence, we need to consider instead a system of nonlinear
Partial Differential Equations (PDESs), with parameters

and multiplicative, as well as additive forcing
(deterministic + stochastic)

dX
_=N(X9t’usﬂ)
dt
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Global warming and
its socio-economic impacts

Mutti-MopEL AVERAGES AND AsSESSED RANGES FOR SURFACE WARMING

Temperatures rise: W
« What about impacts? 4 — Z%iéﬁ?ﬁifé‘é’f“"‘ d
6 | —20th centu i
* How to adapt? 2 ' -
g I
The answer, my friend, . EE
is blowing in the wind, £ g
i.e., it depends on the 3
accuracy and reliability 7 A
of the forecast ... A L ko
= ’ . - - , : : -0 < 0 < <L
1900 2000 2100

Year

Figure SPM.5. Solid finas are multi-model giobal averages of surface warming (relative to 1980-1999) for the scenanios A2, A1B and B1,

S O ur Ce ; I P C C (2 O O 7) , shown as continuations of the 20th century simulations. Shading denotes the +1 standard deviation range of individual model annual

avarages. The orange line is for the experiment wheare concentrations were held constant at year 2000 values. The gray bars at right

A R 4 WG I S P M indicate the bast astimate (solid line within each bar) and the likely range assessed for the six SRES marker scanarios. The assessment of
J J the best astimate and likely ranges in the gray bars includas the AOGCMSs in the left part of the figure, as well as rasults fom a hierarchy

of indapandant models and obsearvational constraints. {Figuras 10.4 and 10.29)



Global warming and

its socio-economic impacts— |l

. (a) Global average surface temperature change
Temperatures rise: i
 What about impacts? 5. 1
e How to adapt? s
2
AR5 VS AR4 (b) Northern Hemisphere September sea ice extent
A certain air of déja vu: ey PP
GHG “scenarios” have been £ o
replaced by “representative 0
concentration pathways” (RCPs), ..
. . . 1950 2000 2050 2100 s 2 £ p
more dlre predICtlonS’ (C) Global ocean surface pH 8228
but the uncertainties remain. .
= e - d =
:;él 7ja \ géé_
Source : IPCC (2013), . | | 1 7
ARS’ WGI’ SPM 1950 2000 2050 2100



Outline

* Natural climate variability as a source of uncertainties
— sensitivity to initial data =» error growth
— sensitivity to model formulation =» see below!



Deterministic predictions

Verification

Ensemble forecast of Lothar (surface pressure)
Start date 24 December 1999 : Forecast time T+42 hours

Forecast 2

Forecast 3

Forecast 4 Forecast 5

)

Forecast 6

Forecast 7

o

Forecast 8

Forecast 9

Forecast 10

Forecast 14
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Forecast 15
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Forecast 26
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Forecast 37

Forecast 39

Forecast 40

Forecast 41

Forecast 43

Forecast 48

Forecast 49

Courtesy Tim Palmer, 2009




Exponential divergence vs. “coarse graining”

The classical view of dynamical
systems theory is:

positive Lyapunov exponent =
trajectories diverge exponentially

But the presence of multiple
regimes implies a much
more structured behavior
In phase space

Still, the probability distribution
function (pdf), when calculated
forward in time, is pretty
smeared out

L. A. Smith (Encycl. Atmos. Sci., 2003)



So what’s it gonna be like, by 21007

Table SPM.2. Recant trands, ssssasmeant of human influence on the trend and projections for extreme westher events for which thers
2 an obsanved lste-20t0h cantwry trend. (Tablee 3.7, 3.8, 9.4; Sections 3.8, 5.5, 9.7, 11.2-11.9}

Likelihood of future trends

based on pcbom for
21st century ualng

SRES scenarios
days and nights over Very Ikely© Likalyd Virtually certaind
moet land areas
Warmer and more fraquent
hot days and nights over Very Ikealy® Liely fnights) Virtually certaind
moet land areas
Warm spella/heat waves.
Frequency incraases over Liely More ikely than not' Very lkely
moet land areas
Heavy precipitation events.
total mial(:om houyﬁ:fq Licely More licely than not! Very ikely
increases over most areas
Area affected by Likedy in many
droughts increasse regions since 19708 More liely than not Likely
lmemotlopcd cydona Likedy in some
activity increases regions since 1970 More liely than notf Likely
Increased incidence of
extrame high s=a level Liely Move likely than not'h Liely




Outline

 Uncertainties and how to fix them

— structural stability and other kinds of robustness
— non-autonomous and random dynamical systems (NDDS & RDS)



How important are different sources of
uncertainty?

» Varies, but typically no single source dominates.

Internal
variability

Carbon cycle

Structural
uncertainty

Parameter
uncertainty

- Downscalin
> . :

precipitation changes for the 2080s relative to

pox in SE England
Source: Met Office

1 Uppsala/Nordica



Can we, nonlinear dynamicists, help?

The uncertainties
might be intrinsic,

rather than mere o o o BT
“tuning problems” i L

If so, maybe
stochastic structural
stability could help!

Might fit in nicely with
recent taste for

“stochastic
parameterizations”

Figure 7.5-1. The three towers of differentiable dynamics.

Tte DDS dneam of stractunal stability (from Abraham & Marsden, 1978)



Non-autonomous Dynamical Systems

A linear, dissipative, forced example: forward vs. pullback attraction

Consider the scalar, linear ordinary differential equation (ODE)
r=—ar+ot, a>0, 0>0.

The autonomous part of this ODE, T = —ax , is dissipative
and all solutions x(t; :EO) — :U(t; :U(O) — :UO) convergeto0as t — +00.

What about the non-autonomous, forced ODE? As the energy being put into the system
by the forcing is dissipated, we expect things to change in time. In fact, if we “pull back”
far enough, replace x(t; x,) by x(s,t;x9) = x(s,t;x(s) = xg),

xz(s,t;xo), with xzg varying

and let s — —oo , we get th
pullback attractor a = a(t)

a(t) — 2(t— 1)

200

150

in the figure,
CT ]_ 100
t) = —(t— —). s/
alt) = —(t = ) ’

| | | | | | | |
-4 -2 o 2 4 6 8 10 12 14 16



Outline

« Two illustrative examples

— the Lorenz convection model
— an El Nino—Southern Oscillation (ENSO) model



Random attractor of the stochastic Lorenz system

Snapshot of the random attractor (RA)

20

-20

-30

40~
40

@ A snapshot of the RA, A(w), computed at a fixed time ¢t and for the
same realization w; it is made up of points transported by the stochastic
flow, from the remote pastt — 7, T >> 1.

@ We use multiplicative noise in the deterministic Lorenz model, with the
classical parameter values b = 8/3, 0 = 10, and r = 28.

@ Even computed pathwise, this object supports meaningful statistics.

Michael Ghil Climate Change and Climate Sensitivity



Sample measures supported by the R.A.

-20 -15 -10 -5 o] 5 10 15 20
X

@ We compute the probability measure on the R.A. at some fixed time t,
and for a fixed realization w. We show a “projection”, [ u.(x, y, z)dy,
with multiplicative noise: dxj=Lorenz(xi, X2, x3)dt + o x}dW;; i € {1,2,3}.

@ 10 million of initial points have been used for this picture!

Michael Ghil Climate Change and Climate Sensitivity



Sample measure supported by the R.A.

@ Sitill 1 Billion I.D., and o = 0.5. Another one?

Michael Ghil Climate Change and Climate Sensitivity



Sample measure supported by the R.A.

Sample measures evolve with time.

@ Recall that these sample measures are the frozen
statistics at a time t for a realization w.

@ How do these frozen statistics evolve with time?

@ Action!

Michael Ghil Climate Change and Climate Sensitivity



A day in the life of the Lorenz (1963) model’s random attractor, or LORA for short;
see Sl in Chekroun, Simonnet & Ghil (2011, Physica D)



Outline

 The IPCC process: results and uncertainties

* Natural climate variability as a source of uncertainties
— sensitivity to initial data =» error growth
— sensitivity to model formulation =» see below!

 Uncertainties and how to fix them

— structural stability and other kinds of robustness
— non-autonomous and random dynamical systems (NDDS & RDS)

« Two illustrative examples

— the Lorenz convection model
— an El Nino—Southern Oscillation (ENSO) model

» Linear response theory and climate sensitivity
« Conclusions and references

— natural variability and anthropogenic forcing: the “grand unification”
— selected bibliography



Climate and Its Sensitivity

Let’s say CO, doubles:

How will “climate” change?

. Climate is in stable equilibrium

(fixed point); if so, mean temperature

will just shift gradually to its new
equilibrium value.

. Climate is purely periodic;
if so, mean temperature will
(maybe) shift gradually to its
new equilibrium value.

But how will the period, amplitude
and phase of the limit cycle change?

. And how about some “real stuff”
now: chaotic + random?

Ghil (Encycl. Global Environmental
Change, 2002)

a) Equilibrium sensitivity

T,
CcCO,

~ Y

b) Nonequilibrium sensitivity
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Classical Strange Attractor

Physically closed system, modeled
mathematically as autonomous
system: neither deterministic
(anthropogenic) nor random
(natural) forcing.

The attractor is strange, but still
fixed in time ~ “irrational” number.

Climate sensitivity ~ change in the
average value (first moment) of the
coordinates (x, y, z) as a parameter
A\ changes.




Random Attractor

Physically open system, modeled
mathematically as non-autonomous
system: allows for deterministic
(anthropogenic) as well as random
(natural) forcing.

The attractor is “pullback” and
evolves in time ~ “imaginary” or
“‘complex” number.

Climate sensitivity ~ change in the
statistical properties (first and
higher-order moments) of the
attractor as one or more
parameters (A, |, ...) change.

Ghil (Encyclopedia of Atmospheric
Sciences, 2" ed., 2012)




Parameter dependence - | S 00557

It can be smooth or it can be rough:
Nifio-3 SSTs from intermediate coupled model
for ENSO (Jin, Neelin & Ghil, 1994, 1996)

N B
I

Averaged temperature (°C)

seasbryy

Skewness & kurtosis of the SSTs:
time series of 4000 years,

A§=3-10"" ST

Skewness dependence Kurtosis dependence
60 T T T T T T 40
; ; ; ; ; ; =)
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Y
o
e
>
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I
4y
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_ i i i i i i ~10 i i i i i i

0.91 0.92 0.93 0.94 0.95 0.96 0.91 0.92 0.93 0.94 0.95 0.96
) )

M. Chekroun & D. Kondrashov (work in progress)



Sample measures for an NDDE model of ENSO
The Galanti-Tziperman (GT) model (JAS, 1999)

% = —epT(t) — Mo(T(t) — Tsup(h(t))), Neutral delay-differential equation (NDDE),
derived from Cane-Zebiak and Jin-Neelin
models for ENSO: T is East-basin SST

, and h is thermocline depth.
—MQTle_Em(T—I_TQ)ILL(t — Ty — 1 )T(t — To — l)
2

2 2
—€m &5 - T_Q — T_Q
—|_M 37_26 2 lLL( 2 >T t 2 >. 00 Relative response in % of <h>
o 8 i/\f
Seasonal forcing given by 5 g
£ 2 <
wu(t) =1+ ecos(wt + ¢). Lo aE
The pullback attractor and its g _
invariant measures were computed. Pesponsan o o,

Figure shows the changes in the mean,
2nd & 4th moment of h(t), along with the
Wasserstein distance d,,, for changes
of 0—-5% in the delay parameter 7 .

100 W

0 1 2 3 4
Change in % of 7, ;=8.476 Change in % of 7, ;=8.476

Note intervals of both smooth & rough dependence!



Pullback attractor and invariant
measure of the GT model

The time-dependent pullback attractor of the GT model supports an invariant
measure v = v(t), whose density is plotted in 3-D perspective.

The plot is in delay coordinates h(t+1) vs.
h(f) and the density is highly
concentrated along 1-D filaments and,
furthermore, exhibits Sharp, near—0-D Time—-depedent invariant measure of the GT-model tas
peaks on these filaments. I |
The Wasserstein distance d,,
between one such configuration, ° |
at given parameter values, and .7
another one, at a different set of
values, is proportional to the work %
needed to move the total probability
mass from one configuration to the other. 1

10.25

0.05

Climate sensitivity 7y can be defined as 2

v = Odyy /T



How to define climate sensitivity or,
What happens when there’s natural variability?

This definition allows us to watch how “the earth moves,” as it is affected
by both natural and anthropogenic forcing, in the presence of natural
variability, which includes both chaotic & random behavior:

Time-dependent invariant measure (t=276.25 yr.)

.
120

100

: v = ddw 0T

Time-dependent invariant measure (t=276.75 yr.)

80



Outline

 (Conclusions and references

— natural variability and anthropogenic forcing: the “grand unification”
— selected bibliography



Concluding remarks, | - RDS and RAs

Summary
« A change of paradigm from closed, autonomous systems

to open, non-autonomous ones.
Random attractors are (i) spectacular, (ii) useful, and
(iii) just starting to be explored for climate applications.

Work in progress

Study the effect of specific stochastic parametrizations
on model robustness.

Applications to intermediate models and GCMs.
Implications for climate sensitivity.

Implications for predictability?



Yet another (grand?) unification

Lorenz (JAS, 1963)

Climate is deterministic and autonomous,
but highly nonlinear.

Trajectories diverge exponentially,
forward asymptotic PDF is multimodal.

Hasselmann (Tellus, 1976)

Climate is stochastic and noise-driven,
but quite linear.

Trajectories decay back to the mean,
forward asymptotic PDF is unimodal.

Grand unification (?)

Climate is deterministic + stochastic,
as well as highly nonlinear.

Internal variability and forcing interact
strongly, change and sensitivity
refer to both mean and higher moments.

TR EEE

Time-depedent invariant meas

h(t+1)

ure of the GT-model

h(t)

0.35

03

0.25

02

0.15

0.1

0.05



Concluding remarks, Il —
Climate change & climate sensitivity

What do we know?

It’s getting warmer.
« We do contribute to it.
So we should act as best we know and can!

Wnat o co?



Concluding remarks, Il —
Climate change & climate sensitivity

What do we know?

* |t’s getting warmer.
« We do contribute to it.
« So we should act as best we know and can!

What do we know less well?
« By how much?
— Is it getting warmer ...
— Do we contribute to it ...
« How does the climate system (atmosphere, ocean, ice, etc.) really work?
« How does natural variability interact with anthropogenic forcing?

ynar o co?



Concluding remarks, Il —
Climate change & climate sensitivity

What do we know?

* |t’s getting warmer.
« We do contribute to it.
« So we should act as best we know and can!

What do we know less well?
« By how much?
— Is it getting warmer ...
— Do we contribute to it ...
« How does the climate system (atmosphere, ocean, ice, etc.) really work?
« How does natural variability interact with anthropogenic forcing?

What to do?

- Better understand the system and its forcings.

« Explore the models’, and the system’s, robustness and sensitivity
— stochastic structural and statistical stability!
— linear response = response function + susceptibility function!!
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GHGs rise!

It's gotta do with us, at
least a bit, ain’t it?

But just how much?

IPCC (2007)

Anthropogenic

Natwural

RapIATIVE FoRCING COMPONENTS

RF Terms RF values (W m®) |Spatial scale| LOSU
'. :
: | | 1.66[1.49101.83 | Global | High
Longefived | :
greenhouse gases [ | 0,48 [0.43 1o 0.53]
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: | |
. | % | '0.05 ['0,15[0 0.05] Con(ingmd
Ozone Stralospheric | Tropospheric Med
; P POSIRTE 1 | aas 02510 05| todobel
! |
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e | | 0070020012 | Gbbal | Low
vapour from CH, | |
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Radiative Forcing (W m?)




AR4 adjustment of 20" century simulation

www.lseca

Hindcasts and Forecasts of Global Mean Temperature

T T I T T T l T T T T | T T T T T T T I T T T l T

Co

.ll ITTTTTT IIIHIIIIII ITTTTTT

o

inatubo

(n

SSanta Mawia sung 21 Chichon = i

Y00 1920 1940 1960 1980 2000 ]

of AR -,":‘Mj,:-,:}*r' ) ’,’ -

2K Ed Tredger E

, i | AR4 Sir;\ulations without 1900-1950 anomaly adjustment | (Ph D theSIS’ LS E’ 2009) f

1 C 1 1 1 1 1 1 | 1 1 | 1 | 1 1 1 1 1 L L | L 1 | —
1900 1920 1940 1960 1980 2000 2020 2040

Grantham Research Institute on L.A. (“Lenny”) Smith (2009)

Climate Change and o
the Environment personal communication



Non-autonomous Dynamical Systems - Il

@ We've just shown that:

|x(t, s; x0) — a(t)| P 0 ; for every t fixed,

and for all initial data xo, with a(t) = Z(t — 1/a).

@ We've just encountered the concept of pullback attraction;
here {a(t)} is the pullback attractor of the system (1).

@ What does it mean physically?

Michael Ghil Climate Change and Climate Sensitivity



Non-autonomous Dynamical Systems - Il

@ We've just shown that:

|x(t, s; x0) — a(t)| P 0 ; for every t fixed,

and for all initial data xo, with a(t) = Z(t — 1/a).

@ We've just encountered the concept of pullback attraction;
here {a(t)} is the pullback attractor of the system (1).

@ What does it means physically?
The pullback attractor provides a way to assess an asymptotic regime
at time t — the time at which we observe the system — for a system
starting to evolve from the remote past s, s << .

@ This asymptotic regime evolves with time: it is a dynamical object.

@ Dissipation now leads to a dynamic object rather than to a static one,
like the strange attractor of an autonomous system.

Michael Ghil Climate Change and Climate Sensitivity



Random Dynamical Systems (RDS), | -

This theory is the counterpart for randomly forced dynamical
systems (RDS) of the geometric theory of ordinary differential
equations (ODEs). It allows one to treat stochastic differential
equations (SDEs) — and more general systems driven by noise
— as flows in (phase space) x (probability space).

SDE~ODE, RDS~DDS, L. Arnold (1998)~V.I. Arnol'd (1983).
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Random Dynamical Systems (RDS), | -

This theory is the counterpart for randomly forced dynamical
systems (RDS) of the geometric theory of ordinary differential
equations (ODEs). It allows one to treat stochastic differential
equations (SDEs) — and more general systems driven by noise
— as flows in (phase space) x (probability space).

SDE~ODE, RDS~DDS, L. Arnold (1998)~V.I. Arnol'd (1983).

Setting:

(i) A phase space X. Example: R".

(i) A probability space (€2, F,P). Example: The Wiener space
Q = Co(R; R") with Wiener measure P.
(iif) A model of the noise 6(t) : Q — € that preserves the measure P, i.e.
0(t)P = P; 0 is called the driving system.
Example: W(t,0(s)w) = W(t+ s,w) — W(s,w);
it starts the noise at s instead of t = 0.

(iv) A mapping ¢ : R x Q x X — X with the cocycle property.
Example: The solution operator of an SDE.

Michael Ghil Climate Change and Climate Sensitivity



RDS, II -

dle property:
b tw)x =
it, 8(s)w) o (s, w)x

X
t)w
Q

@ o is a random dynamical system (RDS)
@ O(t)(x,w) = (O(t)w, ¢(t,w)x) is a flow on the bundle

Michael Ghil Climate Change and Climate Sensitivity



RDS, IllI-

A random attractor A(w) is both invariant and “pullback™ attracting:
(@) Invariant: ¢(t, w)A(w) = A(0(t)w).
(b) Attracting: VB C X, lim;_, o dist(p(t, 0(—t)w)B, A(w)) =0 a.s.

Pullback attraction to A( ®)

B(O(-1,)o)

BRI B(*tg Joo) {oixX {8(NorX
A(®) ot . wA(® )=A(B()w )
e ‘,-‘
___-——"_-__. T ‘__—‘-—1"‘_“—-‘
== B(=T)00 @ (1 Jo Q

B(-T,)0
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Chekroun, Simonnet and Ghil, 2011

Timmerman & Jin (Geophys. Res. Lett., 2002) have derived the following
low-order, tropical-atmosphere—ocean model. The model has three variables:
thermocline depth anomaly h, and
SSTs T; and T» in the western and eastern basin.

T =—a(Ti = T;) - EU(T, - Th),

. = —OC(TZ - Tr) - %(TZ - Tsub)7

h  =r(—h—bLr/2).

The related diagnostic equations are:

Tar =T, — 7501 —tanh(H + h, — 2)/h"]
T =T -TN)k-1]

@ 7: the wind stress anomalies, w = —37/Hn: the equatorial upwelling.
@ u = pLr/2: the zonal advection, Tsy: the subsurface temperature.

Wind stress bursts are modeled as white noise &; of variance o,
and  measures the strength of the zonal advection.

Michael Ghil Climate Change and Climate Sensitivity



Random Shil’'nikov horseshoes

0=0.005 0=0.05

@ Horseshoes can be noise-excited,
left: a weakly-perturbed limit cycle, right: the same with larger noise.

@ Golden: most frequently-visited areas; white 'plus’ sign: most visited.
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Devil's Bleachers'in'a 1-D.ENSO Model

Ratio of ENSO frequency to annual cycle

Frequency Ratio

| [ Chaotic Regime
0.01 0.20 0.25 0.33 0.50 1.00

F.-F. Jin, J.D. Neelin & M. Ghil, Physica D, 98, 442-465, 1996




Parameter dependence — Il

When it is smooth, one can optimize a GCM'’s single-parameter dependence

JJA JJA
2.6} AGCM ens mean = 2.6 AGCM ens mean =
= 5 5 Quadratic metamodel — 5 5 Quadratic metamodel —
-8 ol Linear metamodel — ad Linear metamodel —
€24l 2.4}
= \‘/
23 2.3F
O
O 2.2¢ 2.2}
w
€21 21}
2.0+ 2.0+
3 4 S 6 i 2 4 6 8 10 12
Gustiness param. (m/s) Viscosity time scale (days)

ICTP AGCM (Neelin, Bracco, Luo, McWilliams & Meyerson, PNAS, 2010)



Parameter dependence — Il

Multi-objective algorithms avoid arbitrary weighting of criteria
in a unique cost function:

S8

] O -

3R ) . @ PRECIP

;) (& 03§ + @ T200

N | © U200

RENRRS [ @ V200

3R o | @ U925

S} 7 | @ V925

QN og. @ Q500
&7 OMSSLP

@ LSTA

Optimization algorithms that are  O(N) and O(N?), rather than O(SV),
where N is the number of parameters and S is the sampling density.

ICTP AGCM (Neelin, Bracco, Luo, McWilliams & Meyerson, PNAS, 2010)



But deterministic chaos doesn’t explain all:
there are many other sources of irregularity!

Wavenumber (radians m-1)

* The energy spectrum of the 106 105 104 108 102

108 I | |

atmosphere and ocean is
“full”: all space & time scales | [zl \vewmow
are active and they all 10°F ks

contribute to forecasting
uncertainties.
 Still, one can imagine that
the longest & slowest scales o7 Confinoe inerval
contribute most to the T Ea
longest-term forecasts.
« “One person’s signal is e vééie.engtmﬁ’;) o

Spectral Density (m3 m—2)

-
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W
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101 —

another person's noise. After Nastrom & Gage (JAS, 1985)
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¥ ... keep today’s

climate for tomorrow?

Thought leaders
Rice, top left, spoke
of multilateralism,
while Bono, left,
demanded more
action on poverty.
Presidents Karzai
and Musharraf,
right, both face
troubles at home

Agitator Gore

¥ Feed the world today

o r compact to tackle
I climate change

and poverty

Davos, Feb. 2008, photos by TIME Magazine, 11 Feb. ‘08;

see also Hillerbrand & Ghil, Physica D, 2008, 237, 2132—-2138,
doi:10.1016/j.physd.2008.02.015 .





