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legacy of Lien Hua   



Lien’s legacy 
Ø  A life of passion: for science, for her family, !
     & for her colleagues — the young &!
     the young in spirit.!
Ø  Rigor & enthusiasm, a broad perspective  !
     & a great respect for detail.!
Ø  A mastery of the essentials: theory,!
     observations, & high-end modeling.!
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OFES model 
MOM3 Earth Simulator 
(1/12°; 54 levels) 

Mid-latitude oceanic flows 
 

•  East–West flows alternating with latitude; 
•  quasi-barotropic (surface-intensified) zonal jets. 
 

Maximenko et al. (2005) 
Sasaki (2006) 



Lien & I Zhao & Ghil (JAS, 1991)!



•  The climate system is highly nonlinear and quite complex."
•  The systemʼs major components — the atmosphere, oceans, 

ice sheets — evolve on many time and space scales. "
•  Its predictive understanding has to rely on the systemʼs 

physical, chemical and biological modeling, "
"but also on the thorough mathematical analysis of the models "
"thus obtained: the forest vs. the trees."

•  The hierarchical modeling approach allows one to "
"give proper weight to the understanding provided by the"
"models vs. their realism: back-and-forth between "
!“toy” (conceptual) and detailed (“realistic”) models, "
"and between models and data."

•  How do we disentangle natural variability from the 
anthropogenic forcing: can we & should we, or not?!



Climate	  and	  Its	  Sensi.vity	  
Let’s say CO2 doubles:!
!How will “climate” change?!

 
    Ghil (in Encycl. Global Environmental  !
    Change, 2002)!

a) Equilibrium sensitivity

b) Nonequilibrium sensitivity
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2. Climate is purely periodic;!
    if so, mean temperature will!
    (maybe) shift gradually to its!
    new equilibrium value. !
    But how will the period, amplitude!
    and phase of the limit cycle change?!

1. Climate is in stable equilibrium!
    (fixed point); if so, mean temperature!
    will just shift gradually to its new !
    equilibrium value.!
!

3. And how about some “real stuff” !
    now: chaotic + random?!
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•  Natural climate variability as a source of uncertainties"

–  sensitivity to initial data  error growth"
–  sensitivity to model formulation  see below!"
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Greenhouse gases (GHGs) go up,"
temperatures go up:"

τκ,0

It’s gotta do with us, at least a bit, 
doesn’t it? 

Wikicommons, from "
Hansen et al. (PNAS, 2006); "
see also http://data.giss.nasa.gov/
gistemp/graphs/"



Unfortunately, thingsUnfortunately, things
arenaren’’tt  all all that easy!that easy!

Ghil, M., 2002: Natural climate variability, 
in Encyclopedia of Global Environmental 
Change, T. Munn  (Ed.), Vol. 1, Wiley

What to do?

Try to achieve better
interpretation of, and
agreement between,
models …
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Temperatures rise: 
•  What about impacts? 
•  How to adapt? 

Source : IPCC (2007), 
AR4, WGI, SPM  

The answer, my friend, 
is blowing in the wind, 
i.e., it depends on the  
accuracy and reliability 
of the forecast … 



Global	  warming	  and	  	  	  
its	  socio-‐economic	  impacts–	  II	  	  

Temperatures	  rise:	  
•  What	  about	  impacts?	  
•  How	  to	  adapt?	  

Source : IPCC (2013), #
#AR5, WGI, SPM  

AR5 vs. AR4 
 A certain air of déjà vu: 
 GHG “scenarios” have been 
 replaced by “representative 
 concentration pathways” (RCPs), 
 more dire predictions, 
 but the uncertainties remain. 
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Courtesy Tim Palmer, 2009"



The classical view of dynamical 
systems theory is:"

positive Lyapunov exponent  "
    trajectories diverge exponentially"

But the presence of multiple "
    regimes implies a much "
    more structured behavior "
    in phase space"

L. A. Smith (Encycl. Atmos. Sci., 2003)"

Still, the probability distribution  "
    function (pdf), when calculated "
    forward in time, is pretty "
    smeared out 



So whatSo what’’s it s it gonna gonna be like, by 2100?be like, by 2100?
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Uppsala/Nordica            26 May 2011                                    © Leonard Smith 

>> 

Source: Met Office 
Leonard Smith               26 May 2011                               Uppsala/Nordica          



The uncertainties 
might be intrinsic, 

rather than mere
“tuning problems”

If so, maybe
stochastic structural 
stability could help!

The DDS dream of structural stability (from Abraham  & Marsden, 1978)

Might fit in nicely with
     recent taste for 
“stochastic 
     parameterizations” 



Consider the scalar, linear ordinary differential equation (ODE)!

The autonomous part of this ODE, ! !               is dissipative !
and all solutions ! ! ! ! ! ! ! !   converge to 0 as !

A linear, dissipative, forced example: forward vs. pullback attraction !

ẋ = −αx+ σt , α > 0 , σ > 0 .
ẋ = −αx ,

t → +∞ .x(t;x0) = x(t;x(0) = x0)

x(s, t;x0) = x(s, t;x(s) = x0) ,

s → −∞ ,

What about the non-autonomous, forced ODE? As the energy being put into the system 
by the forcing is dissipated, we expect things to change in time. In fact, if we “pull back” 
far enough, replace x(t; x0) by !

and let ! ! ! we get the !
pullback attractor a = a(t) !
in the figure, !

a(t) =
σ

α
(t− 1

α
) .
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Random attractor of the stochastic Lorenz system

Snapshot of the random attractor (RA)

A snapshot of the RA, A(ω), computed at a fixed time t and for the
same realization ω; it is made up of points transported by the stochastic
flow, from the remote past t − T , T >> 1.

We use multiplicative noise in the deterministic Lorenz model, with the
classical parameter values b = 8/3, σ = 10, and r = 28.

Even computed pathwise, this object supports meaningful statistics.

Michael Ghil Climate Change and Climate Sensitivity



Sample measures supported by the R.A.

We compute the probability measure on the R.A. at some fixed time t ,
and for a fixed realization ω. We show a “projection”,

∫
µω(x , y , z)dy ,

with multiplicative noise: dxi=Lorenz(x1, x2, x3)dt + α xidWt ; i ∈ {1, 2, 3}.
10 million of initial points have been used for this picture!

Michael Ghil Climate Change and Climate Sensitivity



Sample measure supported by the R.A.

Still 1 Billion I.D., and α = 0.5. Another one?

Michael Ghil Climate Change and Climate Sensitivity



Sample measure supported by the R.A.

Sample measures evolve with time.
Recall that these sample measures are the frozen
statistics at a time t for a realization ω.

How do these frozen statistics evolve with time?

Action!

Michael Ghil Climate Change and Climate Sensitivity



 Michael Ghil 

A day in the life of the Lorenz (1963) modelʼs random attractor, or LORA for short;"
see SI in Chekroun, Simonnet & Ghil (2011, Physica D)"
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Letʼs say CO2 doubles:"
"How will “climate” change?"

    Ghil (Encycl. Global Environmental  "
    Change, 2002)"

2. Climate is purely periodic;"
    if so, mean temperature will"
    (maybe) shift gradually to its"
    new equilibrium value. "
    But how will the period, amplitude"
    and phase of the limit cycle change?"

1. Climate is in stable equilibrium"
    (fixed point); if so, mean temperature"
    will just shift gradually to its new "
    equilibrium value."

3. And how about some “real stuff” "
    now: chaotic + random?"



Physically closed system, modeled  
mathematically as autonomous "
system: neither deterministic 
(anthropogenic) nor random 
(natural) forcing."

The attractor is strange, but still 
fixed in time ~ “irrational” number. "

Climate sensitivity ~ change in the 
average value (first moment) of the 
coordinates (x, y, z) as a parameter 
λ changes."



Physically open system, modeled 
mathematically as non-autonomous "
system: allows for deterministic 
(anthropogenic) as well as random 
(natural) forcing."

The attractor is “pullback” and 
evolves in time ~ “imaginary” or  "
                         “complex” number. "

Climate sensitivity ~ change in the 
statistical properties (first and 
higher-order moments) of the 
attractor as one or more  
parameters (λ, μ, …) change."

Ghil (Encyclopedia of Atmospheric 
!Sciences, 2nd ed., 2012)"



It can be smooth or it can be rough:!
Niño-3 SSTs from intermediate coupled model!
for ENSO (Jin, Neelin & Ghil, 1994, 1996)!

Skewness & kurtosis of the SSTs:!
time series of 4000 years, !

   
   

M. Chekroun & D. Kondrashov (work in progress)!



0 1 2 3 4
−40

−20

0

20

40

60

80

100

Change in % of !K,0=8.476

(<
h>
−<

h>
0)"

 1
00

 /<
h>

0 

Relative response in % of <h>

0 1 2 3 4
−40

−30

−20

−10

0

10

Change in % of !K,0=8.476

(<
h2 >1/

2 −
<h

2 >1/
2

0
)"

 1
00

 /<
h2 >1/

2
0

 

Relative response in % of <h2>1/2

0 1 2 3 4
−100

−80

−60

−40

−20

0

20

Change in % of !K,0=8.476

(<
h4 >1/

4 −
<h

4 > 01/
4 )"

 1
00

/<
h4 > 01/

4

Relative response in % of <h4>1/4 

0 1 2 3 4
0

100

200

300

400

Change in % of !K,0=8.476

Re
la

tiv
e 

re
sp

on
se

 in
 %

Response in dW
1
(<<h>>,<<h>>0 

dT
dt = −�TT (t)−M0(T (t)− Tsub(h(t))),

h(t) = M1e−�m(τ1+τ2)h(t− τ1 − τ2)
−M2τ1e−�m(

τ1
2 +τ2)µ(t− τ2 − τ1

2 )T (t− τ2 − τ1
2 )

+M3τ2e−�m
τ2
2 µ(t− τ2

2 )T (t−
τ2
2 ).

The Galanti-Tziperman (GT) model (JAS, 1999)!

Neutral delay-differential equation (NDDE),!
derived from Cane-Zebiak and Jin-Neelin!
models for ENSO: T is East-basin SST !

! ! !  and h is thermocline depth.  !

Seasonal forcing given by
µ(t) = 1 + �cos(ωt+ φ).
The pullback attractor and its
invariant measures were computed.

Figure shows the changes in the mean, 
2nd & 4th moment of h(t), along with the  
Wasserstein distance dW, for changes  
of 0–5% in the delay parameter        .   τκ,0

Note intervals of both smooth & rough dependence! 



The time-dependent pullback attractor of the GT model supports an invariant 
measure               , whose density is plotted in 3-D perspective.!
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h(t) and the density is highly !
concentrated along 1-D filaments and, !
furthermore, exhibits sharp, near–0-D!
peaks on these filaments.!

The Wasserstein distance dW!
between one such configuration, !
at given parameter values, and !
another one, at a different set of !
values, is proportional to the work !
needed to move the total probability !
mass from one configuration to the other.!

Climate sensitivity     can be defined as!γ
γ = ∂dW/∂τ

ν = ν(t)



How to define climate sensitivity or, 
What happens when there’s natural variability? 

� = ⇤dW/⇤⇥

This definition allows us to watch how “the earth moves,” as it is affected !
by both natural and anthropogenic forcing, in the presence of natural!
variability, which includes both chaotic & random behavior:!
chaotic + random behavior: !
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Summary!
•  A change of paradigm from closed, autonomous systems!
"to open, non-autonomous ones.!

•  Random attractors are (i) spectacular, (ii) useful, and "
"(iii) just starting to be explored for climate applications."

Work in progress!
•  Study the effect of specific stochastic parametrizations "
"on model robustness."

•  Applications to intermediate models and GCMs."
•  Implications for climate sensitivity."
•  Implications for predictability?"



Lorenz (JAS, 1963)"
Climate is deterministic and autonomous,"
     but highly nonlinear."
Trajectories diverge exponentially, "
     forward asymptotic PDF is multimodal."

Hasselmann (Tellus, 1976)"
Climate is stochastic and noise-driven,"
     but quite linear."
Trajectories decay back to the mean, "
     forward asymptotic PDF is unimodal."



What do we know?!
•  Itʼs getting warmer."
•  We do contribute to it."
•  So we should act as best we know and can!"

What do we know less well?!
•     By how much?"

  – Is it getting warmer …"
  – Do we contribute to it …"

•     How does the climate system (atmosphere, ocean, ice, etc.) really work?"
•     How does natural variability interact with anthropogenic forcing?"
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It’s gotta do with us, at 
least a bit, ain’t it? 

But just how much? 

IPCC (2007)



www.lsecats.ac.uk  

Ed Tredger !
(PhD thesis, LSE, 2009)!

L.A. (“Lenny”) Smith (2009)!
personal communication !

AR4 adjustment of 20th century simulation 



Non-autonomous Dynamical Systems - II

Remarks
We’ve just shown that:

|x(t , s; x0)− a(t)| −→
s→−∞

0 ; for every t fixed,

and for all initial data x0, with a(t) = σ
α
(t − 1/α).

We’ve just encountered the concept of pullback attraction;
here {a(t)} is the pullback attractor of the system (1).

What does it mean physically?
The pullback attractor provides a way to assess an asymptotic regime
at time t — the time at which we observe the system — for a system
starting to evolve from the remote past s, s << t .

This asymptotic regime evolves with time: it is a dynamical object.

Dissipation now leads to a dynamic object rather than to a static one,
like the strange attractor of an autonomous system.

Michael Ghil Climate Change and Climate Sensitivity
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Random Dynamical Systems (RDS), I - RDS theory

This theory is the counterpart for randomly forced dynamical
systems (RDS) of the geometric theory of ordinary differential
equations (ODEs). It allows one to treat stochastic differential
equations (SDEs) — and more general systems driven by noise
— as flows in (phase space)×(probability space).
SDE∼ODE, RDS∼DDS, L. Arnold (1998)∼V.I. Arnol’d (1983).

Setting:

(i) A phase space X . Example: Rn.

(ii) A probability space (Ω,F ,P). Example: The Wiener space
Ω = C0(R;Rn) with Wiener measure P.

(iii) A model of the noise θ(t) : Ω→ Ω that preserves the measure P, i.e.
θ(t)P = P; θ is called the driving system.
Example: W (t , θ(s)ω) = W (t + s, ω)−W (s, ω);
it starts the noise at s instead of t = 0.

(iv) A mapping ϕ : R× Ω× X → X with the cocycle property.
Example: The solution operator of an SDE.

Michael Ghil Climate Change and Climate Sensitivity
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RDS, II - A Geometric View of SDEs

ϕ is a random dynamical system (RDS)
Θ(t)(x , ω) = (θ(t)ω, ϕ(t , ω)x) is a flow on the bundle

Michael Ghil Climate Change and Climate Sensitivity



RDS, III- Random attractors (RAs)
A random attractor A(ω) is both invariant and “pullback" attracting:

(a) Invariant: ϕ(t , ω)A(ω) = A(θ(t)ω).

(b) Attracting: ∀B ⊂ X , limt→∞ dist(ϕ(t , θ(−t)ω)B,A(ω)) = 0 a.s.

Michael Ghil Climate Change and Climate Sensitivity



Applications to a nonlinear stochastic El Niño model

Chekroun, Simonnet and Ghil, 2011

Timmerman & Jin (Geophys. Res. Lett., 2002) have derived the following
low-order, tropical-atmosphere–ocean model. The model has three variables:
thermocline depth anomaly h, and
SSTs T1 and T2 in the western and eastern basin.

Ṫ1 = −α(T1 − Tr )− 2εu
L (T2 − T1),

Ṫ2 = −α(T2 − Tr )− w
Hm

(T2 − Tsub),

ḣ = r(−h − bLτ/2).

The related diagnostic equations are:

Tsub = Tr − Tr−Tr0
2 [1− tanh(H + h2 − z0)/h∗]

τ = a
β
(T1 − T2)[ξt − 1].

τ : the wind stress anomalies, w = −βτ/Hm: the equatorial upwelling.

u = βLτ/2: the zonal advection, Tsub: the subsurface temperature.

Wind stress bursts are modeled as white noise ξt of variance σ,
and ε measures the strength of the zonal advection.
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Random attractors: the frozen statistics

Random Shil’nikov horseshoes

Horseshoes can be noise-excited,
left: a weakly-perturbed limit cycle, right: the same with larger noise.

Golden: most frequently-visited areas; white ’plus’ sign: most visited.
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An episode in the random’s attractor life
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F.-F. Jin, J.D. Neelin & M. Ghil, Physica D, 98, 442-465, 1996 



When it is smooth, one can optimize a GCMʼs single-parameter dependence!

   
   

ICTP AGCM (Neelin, Bracco, Luo, McWilliams & Meyerson, PNAS, 2010)!



Multi-objective algorithms avoid arbitrary weighting of criteria !
!in a unique cost function:!

   
   

ICTP AGCM (Neelin, Bracco, Luo, McWilliams & Meyerson, PNAS, 2010)!

Optimization algorithms that are  !O(N) and O(N2), rather than O(SN ),
where N is the number of parameters and S is the sampling density.



But deterministic chaos doesn’t explain all: 
there are many other sources of irregularity! 
•  The energy spectrum of the  

 atmosphere and ocean is 
 “full”: all space & time scales 

  are active and they all  
  contribute to forecasting 
  uncertainties. 

•  Still, one can imagine that 
 the longest & slowest scales 
 contribute most to the  
 longest-term forecasts. 

•  “One person’s signal is  
 another person’s noise.” After Nastrom & Gage (JAS, 1985)!



♥ Feed the world today 
or…  

♥ … keep today’s 
climate for tomorrow? 

Davos, Feb. 2008, photos by TIME Magazine, 11 Feb. ‘08; 
see also Hillerbrand & Ghil, Physica D, 2008, 237, 2132–2138, 
doi:10.1016/j.physd.2008.02.015 . 




