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Evidence of persistent layering, with a vertical stacking of sharp variations in
temperature, has been presented recently at the vertical and lateral periphery of
energetic oceanic vortices through seismic imaging of the water column. The stacking
has vertical scales ranging from a few metres up to 100 m and a lateral spatial
coherence of several tens of kilometres comparable with the vortex horizontal size.
Inside this layering, in situ data display a [k�5/3

h k�2
h ] scaling law of horizontal scales

for two different quantities, temperature and a proxy for its vertical derivative, but
for two different ranges of wavelengths, between 5 and 50 km for temperature and
between 500 m and 5 km for its vertical gradient. In this study, we explore the
dynamics underlying the layering formation mechanism, through the slow dynamics
captured by quasi-geostrophic equations. Three-dimensional high-resolution numerical
simulations of the destabilization of a lens-shaped vortex confirm that the vertical
stacking of sharp jumps in density at its periphery is the three-dimensional analogue
of the preferential wind-up of potential vorticity near a critical radius, a phenomenon
which has been documented for barotropic vortices. For a small-Burger (flat) lens
vortex, baroclinic instability ensures a sustained growth rate of sharp jumps in
temperature near the critical levels of the leading unstable modes. Such results can be
obtained for a background stratification which is due to temperature only and does not
require the existence of salt anomalies. Aloft and beneath the vortex core, numerical
simulations well reproduce the [k�5/3

h k�2
h ] scaling law of horizontal scales for the

vertical derivative of temperature that is observed in situ inside the layering, whatever
the background stratification. Such a result stems from the tracer-like behaviour of the
vortex stretching component and previous studies have shown that spectra of tracer
fields can be steeper than �1, namely in �5/3 or �2, if the advection field is very
compact spatially, with a �5/3 slope corresponding to a spiral advection of the tracer.
Such a scaling law could thus be of geometric origin. As for the kinetic and potential
energy, the k�5/3

h scaling law can be reproduced numerically and is enhanced when
the background stratification profile is strongly variable, involving sharp jumps in
potential vorticity such as those observed in situ. This raises the possibility of another
plausible mechanism leading to a �5/3 scaling law, namely surface-quasi-geostrophic
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Layering around meddies: 
« a physical manifestation of an interior 
route to dissipation in the oceans ?»
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Strongly stratified turbulence
Small horizontal Froude number:

Statistical modelling and DNS of stably stratified turbulence. Part 2 137
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Figure 9. Surface of ∂u2/∂z equal to 25% of its maximum value in the computational box,
for run R1 at (t − t0)/TBV = 6.

We observe on figures 7(b) and 8(b) that the EDQNM2 predicted values for the
gradients are in good agreement with the DNS results. The evolution of the largest
gradient, ∂u/∂z, is very close to that of DNS, with almost the same value at 6TBV .
The smallest gradient ∂u/∂x is slightly overestimated by the statistical model at this
time. The closing together of ∂w/∂x and ∂w/∂z is also observed in figures 7(b)
and 8(b), but occurs a little later than in the numerical simulations. The vertical
gradient displays unwanted oscillations whose origin is the same as that resulting in
the overly large oscillations observed in § 5.2 for L3

33. The EDQNM2 model, despite
its statistical nature, can therefore reproduce much of the mechanisms that lead to
the localized organization of the flow. This overall good agreement with DNS should
be underlined, especially with respect to ∂u/∂z, indicating a good prediction of the
layering of the flow by the model.

As in Thoroddsen & Van Atta (1992), we plot in figure 10 the evolution of the
ratio R = (∂w/∂x)2/(∂u/∂x)2 as a function of (t − t0)/TBV . This ratio is a measure
of the anisotropy between horizontal gradients of vertical and horizontal velocity.
Starting from 2, as expected in isotropic turbulence, it decreases to an average value
of ≃1.5 – that is, 1.22 according to relations (6.6) – at 6TBV . The curves for runs R1
and R2, computed by DNS or predicted by the statistical model collapse on a single
curve after the first Brunt–Väisälä period or so, apart from stronger oscillations in
the EDQNM2 model. This is consistent with the results of Thoroddsen & Van Atta
(1992), which collapse on a single curve when plotted as a function of t/TBV from
0.5TBV . In these laboratory experiments, R also seems to tend toward an asymptotic
value for the highest value of N , but this value is half ours, being equal to ≃0.7.
This discrepancy may be due to the difference in initial condition: results for the zero

Godeferd & Staquet (2003)

Lv ⇠ U

N@u
x

@z
Billant & Chomaz (2001), 

Lindborg (2006)

- Strongly anisotropic  
- Three-dimensional dynamics
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h � 1! Condition on viscous effects:

Properties of strongly stratified 
turbulence

! Direct cascade of energy

! Kinetic energy spectrum:

(Turbulence intensity or
buoyancy Reynolds number)

(Lindborg, 2006; Waite & Bartello 2004; 
Riley & de Bruyn Kops 2003,…)

(Brethouwer, Billant, Lindborg & Chomaz 2007)

(Lindborg, 2006, ...)



Outline

• Some physical mechanisms involved in the 
cascade: transition to stratified turbulence from a 
single columnar dipole 

• Experimental and numerical studies of stratified 
turbulence forced by columnar dipoles



Direct Numerical Simulations of a pair of 
counter-rotating vortices

Deloncle, Billant & Chomaz (J. Fluid Mech., 2008)

- Boussinesq approximation
- periodic box
- reference frame where the vortex pair is steady initially



Exponential growth of Zh

                    

Enstrophy evolution for Re=1060

=> Strong vertical shear due to the bending

of the vortices by the zigzag instability



What saturates the enstrophy growth ?

⇒ Saturation of the zigzag instability due to viscous effects 

(not due to nonlinear effects)



Shear instability for Re=3180 ?

Richardson number, Ri
Density perturbations 

�KH / Lb =
U

N



Criterion for the  Kelvin–Helmholtz instability

large

No

(Riley & deBruynKops, 2003)



Spectral analysis of the breakdown 
for high Re

Introduction Secondary instabilities on the zigzag instability Stratified turbulence forced with columnar dipoles Conclusions

Time evolution of the horizontal and vertical spectra
Re = 28000 and Fh = 0.045, large simulation 1024 × 1024 × 128

Compensated spectra t = 2.1
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Time evolution of the horizontal and vertical spectra
Re = 28000 and Fh = 0.045, large simulation 1024 × 1024 × 128

Compensated spectra t = 2.6
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Time evolution of the horizontal and vertical spectra
Re = 28000 and Fh = 0.045, large simulation 1024 × 1024 × 128

Compensated spectra t = 3.1
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Time evolution of the horizontal and vertical spectra
Re = 28000 and Fh = 0.045, large simulation 1024 × 1024 × 128

Compensated spectra t = 3.6
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Time evolution of the horizontal and vertical spectra
Re = 28000 and Fh = 0.045, large simulation 1024 × 1024 × 128

Compensated spectra t = 4.1
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Third step:
fully developed turbulence

spectra very similar as
in strongly stratified
turbulence

E (kh) ∼ εK
2/3k

−5/3
h

but depletion at
intermediate horizontal
scales
vertical spectra:
return to isotropy

Augier, Chomaz & Billant (J. Fluid Mech., 2012)

Re = 28000 Fh = 0.045 1024⇥ 1024⇥ 128

scaling of Lindborg (2006)
for the spectra of fully 
developed stratified turbulence

kb ⇠
N

U
: Buoyancy wavenumber

Lb =
2⇡

kb

Transition to turbulence by a sequence of instabilities: 
zigzag instability       shear instability         turbulence



Outline

• Some physical mechanisms involved in the 
cascade: transition to stratified turbulence from a 
single columnar dipole 

• Experimental and numerical studies of stratified 
turbulence forced by columnar dipoles



Experimental set-up

Augier, Billant, Negretti & Chomaz (Phys. Fluids., 2014)

forced turbulence instead of decaying turbulence =>



Rt = 0.25 Rt = 0.4

Effect of the buoyancy Reynolds number

=> transition from viscous to inviscid regime when Rt is increased 
but the maximum Rt is not large enough 
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FIG. 3. Horizontal (a,c,e) and vertical (b,d,f) cross-sections of the velocity in the quasi-stationary
regime for three values of the buoyancy Reynolds number R ≃ 10 (a,b), R = 100 (c,d) and R = 310
(e,f). In the horizontal cross-sections (a,c,e) the colors show the local horizontal Froude number Fh

whereas in the vertical cross-sections (b,d,f) they show the local vertical Froude number Fv. Each
vector is calculated over a window of 32×32 pixels (corresponding to PIV resolutions of 4.8 mm
and 3.4 mm for the horizontal and vertical cross-sections, respectively) but only half of the vectors
are shown. (enhanced online)

very smooth , for R = 310 we see small scale structures with quite large vertical velocity
suggesting the presence of Kelvin-Helmholtz billows and overturnings. Evidences of the
existence of small-scale vortices and patches of turbulence can be better seen looking at the
movements of the particles used for PIV or at the evolution of the velocity fields in vertical
cross-sections as shown in the movies enhancing figures 3(b) and 3(f).
In order to qualitatively characterize the observed transition, we will now present the
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very smooth , for R = 310 we see small scale structures with quite large vertical velocity
suggesting the presence of Kelvin-Helmholtz billows and overturnings. Evidences of the
existence of small-scale vortices and patches of turbulence can be better seen looking at the
movements of the particles used for PIV or at the evolution of the velocity fields in vertical
cross-sections as shown in the movies enhancing figures 3(b) and 3(f).
In order to qualitatively characterize the observed transition, we will now present the
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very smooth , for R = 310 we see small scale structures with quite large vertical velocity
suggesting the presence of Kelvin-Helmholtz billows and overturnings. Evidences of the
existence of small-scale vortices and patches of turbulence can be better seen looking at the
movements of the particles used for PIV or at the evolution of the velocity fields in vertical
cross-sections as shown in the movies enhancing figures 3(b) and 3(f).
In order to qualitatively characterize the observed transition, we will now present the

PIV in vertical cross-sections

Rt = 0.1



Numerical simulations

Augier, Billant & Chomaz (J. Fluid Mech., submitted)



Time evolution



Compensated horizontal and 
vertical spectra

Rt = 0.4

Rt = 0.3

Rt = 0.2

Rt = 0.1



Simulations for large buoyancy 
Reynolds number

- dipoles are periodically produced at a random location

- quasi-DNS with weak hyperviscosity (Kolmogorov length scale nearly resolved)

- smaller box to resolve finer scales



Time evolution



Horizontal and vertical spectra for
(1152⇥ 1152⇥ 384)

Shear instability

prediction of
Lindborg (2006)

Augier, Billant & Chomaz (J. Fluid Mech., soumis)



Vertical spectra

return to isotropy at the Ozmidov wavenumber 



Conclusions

• Transition to turbulence from coherent vortices by a 
sequence of instabilities: zigzag and shear 
instabilities

• Forced stratified turbulence:
   - spectra in agreement with the theory of strongly 

stratified turbulence, but there exist deviations.
    - direct transfers to the buoyancy lengthscale 
    - return to quasi-isotropy for scales smaller than the 

Ozmidov lengthscale
    

• Next: weakly rotating stratified turbulence


