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A region of intense watermass transformation

Potential temperature and salinity along isopycnal s=25.5
in the main thermocline (from Gordon, 2005)

=> Freshening & cooling of thermocline waters originating from the Pacific



A region of strong internal tide generation

Power conversion from barotropic to 
baroclinic tides for M2 

(Le Provost & Lyard, 2002)

⇒turbulent mixing induced by internal tides: 
one main process responsible for watermass transformation

�~0.11 TW to be compared
to a total value of 1.1TW

�Numerous regions of maximum 
generation force
� Radiation from different spots, either
near passages or along the shelf
�Complex picture

Zoom : the M2 generating force



-However few measurements that enable to characterize
internal tides and turbulent mixing, 
-previous cruises focused on the characterization of 

* Indonesian seas are a region of intense internal tides which

induce turbulent mixing, enhanced impact of internal tides since

they break locally, Indonesian seas being almost enclosed

-previous cruises focused on the characterization of 
transport through the numerous passages and their
interannual variability (e.g. INSTANT program)

=> main objective of INDOMIX cruise (July 2010) on board
Marion Dufresne



Main objectives

� Spatial distribution of dissipation rate of turbulent kinetic

energy and how it relates with baroclinic & barotropic tides?

� Do finescale parameterizations of dissipation induced by internal

wavebreaking provide a relevant estimate even for strongly

nonlinear internal wave field?

� Parameterization in numerical models:  test the scaling of 

dissipation function of tidal energy and stratification proposed by 

Koch-Larrouy et al (2007) against microstructure measurements



INDOMIX cruise



Joint microstructure measurements 
and CTD/LADCP profiles during  2 M2 cycles

•Microstructure sensors:

temperature, vertical shear, conductivity). 

•Seabird sensors + pressure sensors

•Fall velocity Ufall ~0.5m/s
•Sensor time response: 
-Shear and conductivity : 3 ms

VMP6000- Velocity microstructure profiler

-Shear and conductivity : 3 ms
-Temperature: 10 ms
=> Vertical resolution ∆x=Ufall ∆t ≈mm-cm

Turbulent kinetic energy dissipation rate
inferred from vertical wavenumber shear spectra



Dynamics

• Strong currents within straits:
meridional current up to 1.3m/s (St.1),
1m/s (St.3) and 1.4m/s (St.5) 

•Weaker currents at stations remote
from generation area:
0.7m/s at St2, 0.4m/s in Banda Sea

• Perturbation of the baroclinic current:
same contrast
High isopycnal displacements at depthHigh isopycnal displacements at depth
(~200m)

•Semi-diurnal & diurnal constituents
more than 58% total variance



Overview of dissipation profiles
with shear & isopycnals superimposed

� Highest dissipation at St.1 & 5 throughout
the water column
At depth these strong values are correlated
with large isopycnal displacements
else a correlation with strong shear is
sometimes evidenced

�Weaker dissipation at Station 2, consistent
with a weaker signal both in shear & isopycnalwith a weaker signal both in shear & isopycnal
displacement

�Enhanced dissipation in the bottom boundary
layer 



Mean profiles of dissipation and vertical diffusion coefficient: 
a contrasting situation

� highest ε values near
gation areas within passages
(st. 1 & 3 & 5)
� ε values smaller by a few
orders of magnitude in Banda 
below 200m depth
�St2 – « far-field » smaller
values except first 200m &

St1

St5St4St3

St2

values except first 200m &
Bottom boundary layer

� mean Kz ~similarly
from 10^(-3) to 10^(-2)m^2/s 
within passages & the lowest 
values at stations far from 
generation area,  
~[10^(-6);10^(-5)]m^2/s in 
Banda 



We tested 2 kinds of fine-scale parameterizations:

�Parameterization based on the assumption of an energy cascade toward
small-scales through resonant wave- wave interactions,
with the Gregg-Henyey formulation- hyp.: IW ~ GM,

w

with

Test of fine-scale parameterizations of dissipation rates

GH param

with

� A different formulation more adequate when one internal wave mode
dominates: we test here the McKinnon & Gregg formulation (2005),
in which dissipation scales like the shear

ε=ε0 (N/N0) S/Sgm
or alternatively in terms of strain ε=ε0 (N/N0) Str/Strgm

with ε0 is an adjustable parameter

MG param



Test of fine-scale parameterizations
of dissipation rates:
Scatter plots of ε_param with turbulence intensity,

I=ε/(νN^2), displayed with colorscale (log10)

� Both GH and MG parameterizations
provide a relevant estimate of dissipation
rate for intermediate & moderately turbulent 
regimes (I up to 100-1000)

�These parameterizations are relevant for 
Station 2 (remote from generation area) 

GH

GH

MG

MG

MG
These parameterizations are relevant for 

Station 2 (remote from generation area) 
except in the bottom boundary layer and to
a lower extent at Station 3 in the first 300m

�Under-estimate by a few orders of magnitude
within straits where turbulent regimes prevail
throughout the water column
(St.1 & 5, and most of St.3)

⇒there either strong nl wave wave interactions 
& other processes of instability come into play

GH

GH MG

MG



Test of fine-scale parameterizations of dissipation rates

Bin-averaged dissipation rates at station 2 in 2D space
(S^2,N^2), 1st column, and (Str^2N^2,N^2) 2nd column

� highest dissipation in regions
of strong stratification & shear,
strain => in the thermocline

� MG parameterization reproduces

VMPVMP

� MG parameterization reproduces
this pattern well
as opposed to GH parameterization
which varies like the Ri number

⇒MG parameterization more 
relevant

MGMG

GHGH



Scaling for dissipation as a function of energy and stratification

Bin-averaged dissipation rates as a function of energy times N
Turbulence intensity is displayed in color (log10 scale)

�Scaling law that depends on the turbulence intensity, 
typically (EN)^0.7 for I<100 (intermediate regime) 

(EN)^0.5 for 100<I<1000  (moderately turbulent regime) 
⇒Mostly within the thermoline except within straits,
⇒1st scaling mostly at Station 2, 2nd partly at Station 3
�No scaling law for strongly turbulent regimes

� Clear scaling when I<100 (EtN)^0.8 (mostly valid at station 2)

Baroclinic energy x N Baroclinic tidal energy x N



Toward a parameterization of dissipation rate in regions of strong turbulence intensity

Comparisons between
VMP dissipation rate (red)
and Cv^3 (blue) and
MG (cyan)
at the different stationsStation 2

�Weak effects of stratification => we assume that dissipation scales like
the power of the flow: ε=C v^3 (here C=5.e-6m^-1)
� significant improvement at stations 1 & 5 and station 3 for the first 
500m above the bottom
� when I>1000 C v^3 predicts dissipation within a factor of 10

Station 3



Summary

� Strong contrast in dissipation rates with the highest dissipation within
straits & above the bottom, weaker values at stations remote from generation
areas with a local increase within the thermocline
=>variations consistent with the internal tidal signal, a dynamics sometimes
strongly nonlinear and an intense barotropic current
Typical range: [10^-6,10^-3]m^2/s for vertical eddy diffusivity in the 
thermocline and up to 10^-2m^2/s within straits

� Finescale parameterization of internal wavebreaking: relevance of  MG
parameterizations for moderate turbulent intensity (<1000) only, parameterizations for moderate turbulent intensity (<1000) only, 
for higher turbulence intensity, within straits, typically, a parameterization
proportional to v^3 is proposed

� Parameterization in numerical models: a scaling in (EN)^α is obtained for 
moderate turbulence intensity typically within the thermocline except in
Straits where dissipation rate is higher by a few orders of magnitude
⇒Refine existing parameterization in this region in numerical models which
under-estimate dissipation in regions of strong dissipation
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