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• Introduction to stratification problem and baroclinic equilibration


• Description of numerical experiments


• Standing vs. transient eddies


• Analytical QG model with standing / transient eddy interaction


• Cross-stream eddy fluxes



Global Density Stratification

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500

6000
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 7500 8000 8500 9000 9500 10000 10500 11000 11500 12000 12500 13000 13500

Distance [km]

50°S 45°S 40°S 35°S 30°S 25°S 20°S 15°S 10°S 5°S 0°N 5°N 10ºN 15°N 20°N 25°N 30°N 35°N 40°N 45°N 50°N 55°N 60°N

318MSAVE5 318MHYDROS4 32OC202-1
237 314 369 119

De
pt

h 
[m

]
0

100

200

300

400

500

600

700

800

900

1000

n [kg/m3] for A16 25° W 

De
pt

h 
[m

]

27
8

27
5

27
0

26
5

26
0

25
5

25
0

24
5

24
0

31
5

32
0

32
5

33
0

33
5

34
0

34
5

35
0

35
5

36
0

36
5

11
5

11
0

10
5

10
0

95 90 85 80 75 70 65 60 55 50 45 40 35 30 25 20 15 10 5 2St
at

io
n 

No
.

27.60

27.40

27.20

27.0026.8026.60
26.40

26.20

25.00

27.20
27.30

27.40

27.50

27.60

26.60
26.0

24.00

27.60

27.40

27.20
27.00 26.80

26.40
25.50

27.00

27.60

24.00
26.00

27.80

27.90

27.96

28.00

28.04

28.08

28.10

28.15

28.20

28.25
28.30

28.20

28.10

27.10

27.00

Atlantic Neutral Density (WOCE A16)

Eq50S 50N

1.8

0.4



Global Density Stratification - Theoretical Models
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FIG. 8. Schematic of the meridional overturning circulation. Thin solid black lines are the isopyc-
nals, thicker dashed black lines with arrows are the overturning streamlines of the residual circula-
tion, dashed vertical lines are the boundaries between adjacent regions, shaded gray areas are the
convective regions at high latitudes and the surface mixed layer,and the red arrow represents down-
ward diffusive flux due to mixing uniform throughout the ocean. Labels 1, 2, and 3 (in circles)
correspond to the circumpolar channel, ocean basin, and isopycnal outcrop regions considered in
the theory.
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figure from Nikurashin & Vallis (2012) 
also Gnanadesikan (2007), Wolfe & Cessi (2010

• Southern Ocean is unique in its ability 
to generate deep stratification         
(due to lack of meridional boundaries)


• The S.O. deep stratification permeates 
the global ocean below the thermocline


• The S.O. stratification is set by a 
balance between wind-driven upwelling 
and eddy-induced restratification 



• Forced at surface with wind stress & 
relaxation to prescribed temperature


• Very weak interior diapycnal mixing


• Surface temperature is practically 
fixed, interior adjusts to wind forcing


• Very small surface buoyancy flux

D

Idealized Problem: ACC-Like Channel



Equilibration of Circumpolar Currents: 
Meridional Heat Transport Perspective

Hg = ⇢0cp

Z 0

�D
vg✓dz

Hek = �cpf
�1⌧✓0

Hek +Hg ' 0

= ⇢0cpDgvg✓

D ' ⌧�✓

⇢0|fgvg✓|

With walls and quasi-adiabatic dynamics: no net HT

The balance between Ekman and geostrophic HT determines D

D



flat ridge

• MITgcm, 5km resolution, 40 vertical levels, adiabatic interior, temperature only


• 2000 km x 2000 km x 3000m,  Gaussian ridge 1000 m high, 200 km wide


• Forced with sinusoidal wind jet, surface buoyancy restoring to linear gradient

hv✓i = hvih✓i + hv0✓0i

✓0 = ✓ � ✓

hv✓i = hvih✓i + hv0✓0i + hv†✓†i

✓† = ✓ � h✓i

Numerical Experiments



Standing and Transient Eddies

time-mean streamline eddy heat flux 
convergence 

(heating)

eddy heat flux 
divergence 

(cooling) net southward advection of 
heat by standing eddy

Southen Ocean State Estimate (SOSE): 1/6 deg. “eddy permitting” model



Fig. 2. Top panel: the meridional heat transport, H = HEk +Hg, from the same experiments. The black dotted line is
the approximate form of HEk from the RHS of (4). Hg is just the vertical integral of the bottom panel. Bottom panel:
zonal and time-mean temperature flux by the geostrophic flow hvg✓i in color. The black arrows indicate the direction the
flux in the (y, z) plane and the grey contours show the zonal mean isotherms h✓i, contoured every 0.5�C.

replaced by KGM :

h =
⌧0Ly

⇢0|f |KGM
(9)

In either framework, the sensitivity of the thermocline
depth h to wind changes depends on the e�ciency param-
eter K. The advantage of the first formulation is that it
is quite general and does not depend on the validity of the
Gent-McWilliams parameterization, which is not necessar-
ily appropriate for describing the e↵ects of standing topo-
graphic eddies. If K = const, the thermocline depth scales
linearly with ⌧0. The concept of “eddy saturation,” in
which h becomes independent of ⌧0, implies that Kg / ⌧0.
Models exhibit a range of behavior between these two lim-
its, depending on resolution and parameterization choices
(Spence et al. 2009; Meredith et al. 2012).

As a practical matter, we find h via the expression

h = 2

R 0
�H

zh✓idz
R 0
�H

h✓idz
(10)

evaluated at the northern boundary, where the thermocline
is deepest. This is a standard method for characterizing
thermocline depth (???). We can then find the e↵ective
Kg by rearranging (7).

To illustrate these concepts, we present diagnostics of
hvg✓i and H in Fig. 2. This figure compares the reference
simulations (⌧0 = 0.2 N m�2) with and without the topo-
graphic ridge. The upper panel demonstrates that HEk

and Hg are essentially the same in both cases, with HEk

remaining very close to the approximation defined in (4).
Hg compensates almost completely for HEk, meaning that
H, the net MHT, remains very close to zero. The di↵erence
between the two simulations is only revealed when the bot-
tom panel is examined; the heat transport in the ridge case

5

D = 1200 m D = 1000 m

Stratification: with and without the ridge



• With ridge: shallower 
stratification, stronger 
geostrophic heat transport, 
weaker wind dependence.


• Bottom velocity is much lower


• Zonal transport reduced


Sensitivity to Winds



Two-Layer QG Model forced by wind w/ bottom drag
where the PV is given by

q1 =r2 1 + �y + F1( 2 �  1) (21)

q2 =r2 2 + �y + F2( 1 �  2) +
f0hb

H2
. (22)

The bottom topography hb is the departure from the zonal
average of the expression in (2), and F1,2 = f2

0 /(g0H1,2),
with g0 = �b/2.

The zonally and time averaged QGPV equations, inte-
grated in y with suitable boundary conditions, are

<  †
1xq†1 > + <  0

1xq0
1 >=� ⌧

⇢0H1
(23)

<  †
2xq†2 > + <  0

2xq0
2 >=0 , (24)

We now consider the mean zonal flow to be given sim-
ply by <  1,2 >= �yU1,2, with U1,2 constant, so that
< q1,2 >= [� � F1,2(U2,1 � U1,2)]y. The equation for the
standing wave is given by

U1q
†
1x + (� � F1U2 + F1U1) †

1x + J( †
1, q

†
1)�

<  †
1xq†1 >y +J( 0

1, q
0
1)� <  0

1xq0
1 >y=0 (25)

U2q
†
2x + (� � F2U1 + F2U2) †

2x + J( †
2, q

†
2)�

<  †
2xq†2 >y +J( 0

2, q
0
2)� <  0

2xq0
2 >y=� rr2 †

2 ,
(26)

where we have included the bottom drag associated with
the standing wave.

a. The standing wave response

We now consider the standing wave to be independent
of y, and we parametrize the time mean transient eddy PV
flux as local downgradient di↵usion, i.e.

J( 0
1,2, q

0
1,2) = �Kr2q1,2 . (27)

With these assumptions, and using the PV definition, (25,26)
become, after integration in x

U1 
†
1xx + (� � F1U2) †

1 + F1U1 
†
2 =Kq†1x

(28)

U2 
†
2xx + (� � F2U1) †

2 + F2U2 
†
1 + U2f0

hb

H2
=Kq†2x � r †

2x .

(29)

It is clear that the standing wave is forced by the topog-
raphy hb, whose scale � we assume to be larger than the
deformation radius,

p
1/F2. We also assume that the wave-

length
p

U1/� is larger than the deformation radius, and
of the same order of �. This scale separation allows the
large-scale approximation, whereby relative vorticity is ne-
glected compared to the vortex stretching terms multiplied
by F1,2. This approximation gives, to leading order,

U2 
†
1 = U1 

†
2 . (30)

Fig. 7. The steady upper layer flow �U1y + †
1 solution of

(31). The pameters have the following values: H1 = 1000
m, U1 � U2 = ��b/(f0Ly), U2 = 0.012 m/s. All the
other parameters are the same as the primitive equation
computations.

The solution is found at next order, or more simply, by
considering the equation for the barotropic mode, which
leads to the solvability condition
✓

1 +
H1U

2
1

H2U2
2

◆
 †

2xx+
�

U2

✓
1 +

H1U1

H2U2

◆
 †

2+f0
hb

H2
= � r

U2
 †

2x .

(31)
To leading order the solution is independent of g0 and of the
eddy di↵usivity K. The solution is a damped wave distur-
bance downstream of the ridge. Because U2 is much smaller
than U1, the wavelength of the stationary response can be
approximated with

p
U1H1/�H, where H = H1 + H2 is

the total depth of the domain. Using values appropriate
for the model, the wavelength is of order 100 km, larger
than the baroclinic deformation radius, confirming the ap-
propriateness of the large-scale approximation.

The solution of (31) is easily obtained and is shown in
Fig. 7, where �U1 y+ †

1 is contoured using the parameters
of the primitive equation reference simulation.

b. The zonally averaged momentum and heat balances

With the solution thus found it is possible to calculate
the PV fluxes due to the standing wave, given by

<  †
1xq†1 >=F1 <  †

1x 
†
2 > (32)

<  †
2xq†2 >=F2 <  †

2x 
†
1 > �f0 <  †

2hbx/H2 > . (33)
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qgpv:

zonal mean + standing + transient
 n =h ni(y) +  

†
n(x, y) +  

0
n(x, y, t)

qn =hqni(y) + q

†
n(x, y) + q

0
n(x, y, t)

U1q
†
1x + (� � F1U2 + F1U1 � U1yy) 

†
1x + J( †

1, q
†
1)�

h †
1xq

†
1iy + J( 0

1, q
0
1)� h 0

1xq
0
1iy =0

U2q
†
2x + (� � F2U1 + F2U2 � U2yy) 

†
2x + J( †

2, q
†
2)�

h †
2xq

†
2iy + J( 0

2, q
0
2)� h 0

2xq
0
2iy = �r

b

r2 †
2/H2

Assume very slow variation in y

The nonlinear terms drop out to leading order, the wave depends on y parametrically 

@tqn + J( n, qn) = � ⌧y
H1

�n,1 �
rb
H2

r2 2�n,2



Standing wave forced by ridge

U1 
†
1xx

+ (� � F1U2) †
1 + F1U1 

†
2 = Kq†1x

U2 
†
2xx

+ (� � F2U1) †
2 + F2U2 

†
1 + U2f0

h
b

H2
= Kq†2x

� r †
2x

J( 0
1,2, q

0
1,2) = �Kr2q1,2

Use transient eddy closure:

Approximation: ridge scale larger than deformation radius:

1st order, equivalent barotropic:

1st order, equivalent barotropic:

next order:

A damped wave with wavelength:

U2 
†
1 ⇡ U1 

†
2

✓
1 +

H1U
2
1

H2U2
2

◆
 †
2xx +

�

U2

✓
1 +

H1U1

H2U2

◆
 †
2 +

r

U2
 †
2x = �f0

h
b

H2

p
U1/�

@
xx

,�/U
i

⌧ F
i
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The zonally averaged  PV equations are:
h †

1xq
†
1i+ h 0

1xq
0
1i =� ⌧

⇢0H1

h †
2xq

†
2i+ h 0

2xq
0
2i =

r
b

U2

H2
Rewritten as:

f0h †
2hbx

i = ⌧

⇢0
� r

b

U2 Momentum balance

F1h †
1 

†
2xi+KF1(U1 � U2) =

⌧

⇢0H1
Heat balance

is due to the correction to the equiv. barotr. mode and we get:

KF1(U1 � U2)

 
1 +

h †2
2xi
U2
2

!
=

⌧

⇢0H1
.

h †
1 

†
2xi

U1 U2and determined by zonally averaged dynamics

Standing wave increases eddy diff.by increasing           and the isotherms arclength  

The boxed constraints determine U1 U2and

Heat balance

Nonlinear equilibration

|rT |



Cross-Stream Heat Transport

The rotational flux 
component is removed: 

(v0✓0)div = r�

r2� = r · v0✓0

w/
colors show 
magnitude of the 
cross-stream flux



Flat

Ridge

Flat

Ridge

Fig. 9. Components of the heat transport across ⇥ contours in the x, y plane. The arrows show the direction and
magnitude of the divergent vertically-integrated flux, while the colors show the magnitude of the cross-⇥ component. On
the left is the time mean flux, and on the right is the transient eddy flux.

We plot the the vertically integrated divergent eddy
temperature flux in Fig. 9 as arrows in the (x, y) plane, sep-
arated into a time mean (both geostrophic and ageostrophic)
and transient eddy component. This figure also shows the
magnitude of the the flux normal to r⇥. It is striking how
the divergent flux is aligned perpendicular to the ⇥ con-
tours, meaning that � and ⇥ are themselves aligned. This
means that the eddy fluxes “know” about ⇥ and that it is
a naturally choice of streamwise coordinate. (Recall that
the method for identifying the divergent portion of the flux
is completely unrelated to the choice of streamwise coordi-
nates.)

The eddy flux is nearly entirely down-gradient, as ex-
pected since it is just the divergent part (Marshall and
Shutts 1981). The cross-stream flux occurs mostly in the
vicinity of the strong meander downstream of the ridge. In
fact, close inspection of the arrows in Fig. 9 reveals that
F div

TE is mostly a zonal flux across the ⇥ contours running
north-south. These zonal fluxes go in both direction out
and away from the trough of the standing wave. No won-
der the transient eddies did not make a strong contribution
to the meridional heat transport! The strongest divergent
eddy heat fluxes are actually zonal, not meridional at all.

The steady flux is equal and opposite to the eddy flux.
It is clear that this must be due to the combined action
of ageostrophic and geostophic flux. The Ekman flux is
spread broadly over the domain (not shown), so the steady
geostrophic responds by advecting heat back and forth

across ⇥ contours in such a way as to bring about the
pattern seen in the figure. While contributing little to the
integrated cross-stream heat flux, vg✓ therefore plays an
important role in organizing the zonal structure of the to-
tal steady cross-stream flux (left panel of Fig. 9).

From this divergent eddy heat flux, it is possible to
construct a local cross-stream eddy di↵usivity. We define
this di↵usivity as

Kdiv
? (x, y) = � 1

H

F div
TE · n̂

|r⇥| (44)

where H is the full depth.This quantity measures the lo-
cal e�ciency of eddies at transporting heat across the ⇥
contours. Kdiv

? is plotted in Fig. 10, for both the flat and
ridge reference experiments. For the flat-bottom experi-
ment, Kdiv

? is zonally uniform, peaking in the northern part
of the domain around 4000 m2 s�1. For the ridge experi-
ments, Kdiv

? is highly variable in space. The region of high-
est di↵usivity is downstream of the ridge in the standing
meander, particularly on the right side of the wave trough.
In this region, di↵usivities exceed 5000 m2 s�1. This region
is precisely where the gradients are also strongest, leading
to an extremely strong local cross-stream flux. In the west-
ern part of the domain, but the di↵usivity and the gradient
are weak. This local correlation between strong mixing and
strong gradient is perhaps the greatest challenge for con-
structing a theoretical model based only on streamwise-
averaged quantities. We will return to this point in the
forthcoming discussion.

15

• Eddy fluxes are downgradient 
• Eddy fluxes are suppressed away from the ridge 
• Max. flux is not in the same location as max. gradient

Transient Eddy Diffusivity



Two Paradigms of Baroclinic Instability

• Global/convective instability: Eady 
(1949); Phillips (1951)...;


• Growth rates depend on shear and 
N2, weakly on U.


• Modes propagate in space


• Bottom zonal flow is fast (only 
bottom drag) 


• Absolute / local instability: Merkine 
(1977); Pierrehumbert (1984)


• Local instability depends on local 
shear, N2  and strongly on U.


• Modes grow in place, localized


• Bottom zonal  flow is weak 
(topographic form-stress)



Conclusions

• The depth of the stratification depends on the efficiency of eddies at 
transporting heat poleward: more efficient eddies give a shallower 
thermocline. 


• Eddies are more efficient with a ridge: their “diffusivity’’ is augmented by 
standing waves by increasing temp. gradients and arclength (explained by 
QG model).


• The ridge reduces mean zonal flow (esp. bottom flow), and locally increases 
baroclinicity: absolute instability is favored and is more efficient than global. 
Topography provides an organizing center for eddy fluxes


•  Ridge provides a feedback which reduces  h and mean flow, enhancing eddy 
growth and heat flux.
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A definition sketch/or the heat flux calculation. Coordinate s measures distance westward 
along circumpolar path 7- v is velocity normal to the path, positive poleward. 

composed of a mean advective flux F A and an eddy flux F E. It is the former, FA, that we 
attempt to estimate in this paper. 

The mean normal flow t3 can be written as the sum of two terms 

i = v~+ Vg, (3i 

where the first, v~, is driven by surface wind stress and the second, Vg, is the geostrophically 
balanced current. From Ekman theory the vertical integral of v~ must be related to the wind 
stress component t ~s) along t' by 

f o dz - W ~ / f p ,  t4i t~ r 

where f is the Coriolis parameter, negative in the southern hemisphere. Since v~ is 
concentrated in the surface layer where the temperature Oslc(s) is nearly uniform, the 
contribution of v, to F ,  can be approximated by 

ff. cpv~O dA = -  f cf-'O,~ct~'~ . (5) 

The geostrophic and hydrostatic relationships permit writing Vg as 

f ° vg = %o - g p f -  l(03/Os) dz',  (6) 
z 

Advective flux of heat in the Southern Ocean 1061 

where 5 is the mean anomaly of specific volume and %o is the (undetermined) surface 
geostrophic velocity. 

Hence, FA can be written as the sum of three parts, 

where 

and 

F A = fEk + F a t  + FaT, (7) 

FEk = -- ;~, cf  - l (Osf c -- 00)T is) ds, (8) 

Fac = f~ dFBc(S), (9) 

Fay = f f~ cp ,~ ,O-  0o, ~ ,lO, 

;o 
dFBc(S) = - _ H(~) cp(O-- 0o) gp f -  x(8"5/OS) dz' dz ds. (11 ) 

We shall refer to these as the Ekman flux, the baroclinic flux, and the barotropic flux. H(s) 
is the depth of water along the path y. In these definitions an arbitrary constant 
temperature 0o has been inserted. This 0o has no effect on the sum of the three terms 
because the total mean mass flux across the section 7 must vanish, i.e., 

M = p~dA = - f-lz(~)ds - gp2f-l(83/Ss)dz 'dA + p%odA = 0. (12) 

The freedom of choice of 7 and 0o permits a crucial simplification. Define a vertically 
averaged temperature 

i f  ° ®(s) = H -  O(s, z) dz. (13) 
- H(s)  

If we can choose a path 7 along which ®(s) has a constant value 0o, then FaT = 0; the 
unknown reference velocity vg o plays no role in the computation. The other two terms of 
which F A is composed, FEk and Fac, can be computed solely from standard hydrographic 
data and surface wind stress. We call the temperature 0o chosen in this way the reference 
temperature of the path-section 7. 

As a consequence of choosing a path along which O is constant, the incremental 
contribution to the baroclinic flux from a path element ds is independent of the choice of 
reference level. Suppose the reference level for the geostrophic velocity is changed from 
z = 0 to any arbitrary depth, even a depth varying along the path, i.e., z = z,(s). Then (11) 
may be written 

f o f f,t~) dFac = - cp(~-  0o) gpf -  1(03/0s) dz' dz ds 
- H ( s )  [fo l ro 1 - cp(O-Oo)dz gpf-l(O3/Os)dz' ds, (14) 

- H(s )  J LJ  z,(s) 

Advective flux of heat in the Southern Ocean 1075 

caused by sparse data over large parts of the circumpolar Southern Ocean region. Assuming 
that fluctuations of vertically averaged temperature are uncorrelated with barotropic 
geostrophic velocity fluctuations, this barotropic flux error is, pessimistically, 10 x 1013 W, 
and hence within the worst-case baroclinic flux error. 

We determined the wind-driven Ekman heat flux FEk to be approximately - 15 x 1013 W 
(equatorwards). Because of seasonal bias in the data, this figure is probably subject to large 
error, which we have not attempted to estimate. 

The annual average heat loss Q of the ocean waters south of the Antarctic Polar Front to 
the atmosphere has been estimated by GORDON and TAYLOR (1975) to be 40 x l 0  la W. A 
recent recalculation by A. L. GORDON (personal communication) has lowered this figure to 
30 x 1013 W. This is because of an anomalous heating of the ocean by the atmosphere that 
is observed just south of the Polar Front (TAYLOR et al., 1978), which was not taken into 
account in the earlier calculation. On the other hand, the net heat loss of high-latitude 
southern waters should be exactly balanced by the net heat gain of low-latitude southern 
waters. This independent figure is given as 35 x 1013 W by HASTENRATH (1980; see his 
Fig. 9) at 53°S, the mean latitude of the Polar F ont. TRENBERTH'S (1979; see his Fig. 1) 
residual calculation of inferred oceanic flux from atmospheric data gives the much larger 
figure of 100 x 1013 W in the 50 to 60°S latitude band, but this estimate must be regarded 
doubtfully because of the paucity of atmospheric soundings in the southern hemisphere. 

Because our circumpolar path of constant vertically averaged potential temperature is 
very nearly coincident with the Polar Front, we posit the following long-term averaged heat 
balance for the Southern Ocean waters south of the Polar Front: 

Fsc + FBx + FEk + FE + F? = Q 

estimate: 0 0 - 15 45 0 +30 
error: +23 +10 +30? 
units: 10 la W 

(27) 

F E is the eddy heat flux defined in (2). We have included a term F? to stand for any heat 
fluxes that we may have overlooked in our analysis. We can conceive of a number of 
possibilities that we will outline in the following discussion. 

An assumption implicit in the calculation is that the flow beneath the surface Ekman 
layer, at least the baroclinic component of it, is geostrophic and that this total interior flow 
must balance the net Ekman mass transport across the path. The calculation is flawed, 
then, to the extent that ageostrophic motions may occur. There seem to be three 
possibilities: (i)deep boundary currents, perhaps associated with submarine ridges, in 
which inertial accelerations u. Vu are significant; (ii) interior currents, not associated with 
boundaries, for which inertial accelerations are again dominant; and (iii)frictional 
currents, either bottom Ekman layers, or sidewall Stommel or Munk layers. We shall argue 
against these possibilities below. 

We take more seriously the objection that there may exist intense concentrated currents, 
probably associated with submarine topography, as suggested by MUNK and PALM/~N 
(1951). Such currents are purely geostrophic--indeed, the inertial or frictional boundary 
currents suggested in the previous paragraph are also expected to be geostrophically 
balanced in the important cross-stream dlrection--and hence, in principle, automatically 
accounted for in the geostrophic heat flux calculation. However, the coarse sampling 
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Fig. 5. Dependence of heat transport components on ⌧0, the wind stress magnitude. To obtain mean values for each
experiment, each component from Fig. 4 was averaged meridionally over the northern half of the domain. On the left are
components of the meridional heat transport, i.e. transport across latitude circles. On the right are components of the
transport across ⇥-contours.

realistic Southern Ocean model.

b. What drives the standing eddy heat transport?

It is clear why transient eddies must transport heat to-
ward the pole in the flat-bottom case. Arising from baro-
clinic instability of the mean state, their energy source is
the available potential energy (APE) contained in the slop-
ing isopycnals of the ACC. The transfer from APE to EKE
is expressed in the eddy energy budget as a positive term
g↵hw0✓0i. Under statistically steady, adiabatic conditions,
this vertical heat flux must be accompanied by a merid-
ional flux �hv0✓0ih✓iy = hw0✓0ih✓iz, so that the heat flux
is directed entirely parallel to the mean isotherms, with
no cross-gradient component. This behavior is evident in
Fig. 2 (left panel), which includes arrows showing the di-
rection of the heat flux in the meridional plane; the arrows
clearly point along the isotherms. Because of this energy
pathway, when transient eddies are the only contributor to
the MHT, it is indeed reasonable to associate increased Hg

with higher EKE.
It is not so obvious why standing eddies should trans-

port heat poleward. They do not arise from baroclinic
instability, but rather from a dynamically complex inter-
action of the current with topography. The meanders of the
ACC are often explained using an “equivalent barotropic”
analysis, in which the current is characterized by a sin-
gle mode which decays (usually exponentially) with depth
(?). While such models successfully explain many of the
features of the ACC, they says nothing about the heat
transport by standing eddies. This is because equivalent
barotropic flow cannot transport any heat. Heat transport

in geostrophic flow requires at least two vertical modes (?).
Some progress can be made by considering the standing-

wave variance budget. To derive this budget, subtract (13)
from (1), multiply the result by ✓†, and take a zonal and
time average. The result,

@

@t
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2

◆
+ hu†✓†i ·rh✓i =
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where the diabatic terms include terms dependent on dif-
fusivity  and air-sea damping �. This equation resembles
a standard tracer variance equation, except for the first
term on the RHS, which describes the interaction of the
standing eddies with the transient eddies.

We have diagnosed this budget from our simulations.
The diabatic terms are negligible except for a small con-
tribution close to the surface. This indicates that surface
forcing is not important for driving the standing-wave heat
transport. The mean advection term is also small. If we
neglect these terms, we can rearrange the equation in a
way that reveals how the standing-wave meridional heat
transport can be supported:

hv†✓†ih✓iy ' �hw†✓†ih✓iz�r· hu
†✓†2i
2

�h✓†r·(u0✓0)i (17)

The three terms on the right each represent a distinct phys-
ical process driving the standing eddy heat transport. The
first is associated with the vertical buoyancy flux by the
standing wave. The second is the so-called nonlinear “triple
correlation” term, resulting from advection of ✓†2 by the

9

conversion to 
transient variance

large

EKE Dissipation

standing wave itself. The final one is due to the correla-
tion of ✓† with heat flux convergence by the transient ed-
dies. The vertical averages of the terms in (17) are plotted
in Fig. 6.

Overall the balance can be summarized as follows. All
terms are significant in some part of the domain. How-
ever, there is a large degree of cancellation between the
vertical flux term and the triple correlation term. On the
other hand, the transient-eddy term is clearly the domi-
nant driver of the poleward heat transport by the standing
wave. Standing wave variance is primarily created by the
hv†✓†ih✓iy term and destroyed by the h✓†r · (u0✓0)i term.
This is an interesting result; it means that, although the
transient eddies are relatively unimportant in the merid-
ional heat transport itself, the local transient eddy heat
convergence can nevertheless be crucial for maintaining the
standing wave meridional heat transport.

This conversion term reappears in the transient eddy
variance budget, which we write approximately as

hv0✓0ih✓iy ' �hw0✓0ih✓iz + h✓†r · (u0✓0)i . (18)

Triple correlation terms have been neglected because they
are smaller in the case of transient eddies. The vertical
average of this balance is also plotted in Fig. 6. Here we
see that the conversion term is a strong source of transient
eddy variance, in addition to the term v0✓0h✓iy. As a re-
sult, the vertical transient eddy flux term w0✓0 must work
overtime to destroy transient eddy variance. Energetically,
this destruction acts as a source of transient eddy kinetic
energy. Most of the dissipation therefore occurs on the
transient eddy kinetic energy, primarily through bottom
drag.

(Zika et al. 2013) recently examined the changes in over-
turning a realistic eddying model of the Southern Ocean
in terms of both latitude-density coordinates (the conven-
tional framework for diagnosing the MOC) and also an
innovative density-depth coordinate system. In the con-
ventional framework, they found that changes in Ekman
fluxes were primarily compensated by changes in standing
eddy fluxes, as we also found here. But in the density-depth
coordinate, where the vertical flux rather than meridional
flux plays the primary role, the compensation was between
Ekman fluxes and transient eddy fluxes, with standing ed-
dies playing a much smaller role. This is entirely consis-
tent with our analysis of the variance budget, which helps
explain why vertical fluxes due to transient eddies must
remain high even when transient eddies do not contribute
strongly to the variance budget. These transient-eddy ver-
tical buoyancy fluxes are the main path to energy dissipa-
tion.

Fig. 6. Vertical average of the dominant terms in the
standing eddy (17) and transient eddy (18) variance bud-
gets . The light gray line is the residual of the plotted
terms.

5. A simple model of heat transport by transient
eddies and the standing wave

The process of establishment of a standing wave by the
ridge, along with the heat transport by transient eddies
and standing wave component, can be illustrated by the
following quasi-geostrophic (QG) two-layer model.

We consider two layers governed by the QG potential
vorticity (PV) equations. As in previous section we parti-
tion the flow into a zonal and time average, a standing wave
and a transient eddy component, i.e. the streamfunctions,
 1,2, and potential vorticity, q1,2, are given by

 1,2 = <  1,2 > (y) +  †
1,2(x, y) +  0

1,2(x, y, t) (19)

q1,2 = < q1,2 > (y) + q†1,2(x, y) + q1,2(x, y, t) , (20)
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Fig. 9. Components of the heat transport across ⇥ contours in the x, y plane. The arrows show the direction and
magnitude of the divergent vertically-integrated flux, while the colors show the magnitude of the cross-⇥ component. On
the left is the time mean flux, and on the right is the transient eddy flux.

We plot the the vertically integrated divergent eddy
temperature flux in Fig. 9 as arrows in the (x, y) plane, sep-
arated into a time mean (both geostrophic and ageostrophic)
and transient eddy component. This figure also shows the
magnitude of the the flux normal to r⇥. It is striking how
the divergent flux is aligned perpendicular to the ⇥ con-
tours, meaning that � and ⇥ are themselves aligned. This
means that the eddy fluxes “know” about ⇥ and that it is
a naturally choice of streamwise coordinate. (Recall that
the method for identifying the divergent portion of the flux
is completely unrelated to the choice of streamwise coordi-
nates.)

The eddy flux is nearly entirely down-gradient, as ex-
pected since it is just the divergent part (Marshall and
Shutts 1981). The cross-stream flux occurs mostly in the
vicinity of the strong meander downstream of the ridge. In
fact, close inspection of the arrows in Fig. 9 reveals that
F div

TE is mostly a zonal flux across the ⇥ contours running
north-south. These zonal fluxes go in both direction out
and away from the trough of the standing wave. No won-
der the transient eddies did not make a strong contribution
to the meridional heat transport! The strongest divergent
eddy heat fluxes are actually zonal, not meridional at all.

The steady flux is equal and opposite to the eddy flux.
It is clear that this must be due to the combined action
of ageostrophic and geostophic flux. The Ekman flux is
spread broadly over the domain (not shown), so the steady
geostrophic responds by advecting heat back and forth

across ⇥ contours in such a way as to bring about the
pattern seen in the figure. While contributing little to the
integrated cross-stream heat flux, vg✓ therefore plays an
important role in organizing the zonal structure of the to-
tal steady cross-stream flux (left panel of Fig. 9).

From this divergent eddy heat flux, it is possible to
construct a local cross-stream eddy di↵usivity. We define
this di↵usivity as

Kdiv
? (x, y) = � 1

H

F div
TE · n̂

|r⇥| (44)

where H is the full depth.This quantity measures the lo-
cal e�ciency of eddies at transporting heat across the ⇥
contours. Kdiv

? is plotted in Fig. 10, for both the flat and
ridge reference experiments. For the flat-bottom experi-
ment, Kdiv

? is zonally uniform, peaking in the northern part
of the domain around 4000 m2 s�1. For the ridge experi-
ments, Kdiv

? is highly variable in space. The region of high-
est di↵usivity is downstream of the ridge in the standing
meander, particularly on the right side of the wave trough.
In this region, di↵usivities exceed 5000 m2 s�1. This region
is precisely where the gradients are also strongest, leading
to an extremely strong local cross-stream flux. In the west-
ern part of the domain, but the di↵usivity and the gradient
are weak. This local correlation between strong mixing and
strong gradient is perhaps the greatest challenge for con-
structing a theoretical model based only on streamwise-
averaged quantities. We will return to this point in the
forthcoming discussion.
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Fig. 11. Hovmoeller diagram of surface temperature anomalies ✓0 at y = 1000 km as a function of x and t. The dashed
line indicates the surface zonal velocity and the solid line the barotropic zonal velocity.

to the local instability problem discussed by Pierrehum-
bert (1984). In this problem, the growth rate of such a
local instability depends not only on the zonal-mean baro-
clinic shear, but also on how strongly the shear varies in x;
in other words, it depends on the amplitude of the standing
wave. Despite the apparent di�culty, this seems like the
direction we must go in order to enhance our theoretical
model of the ACC and its response to changes in forcing.

To emphasize the potential pitfalls associated with a
closure based purely on streamwise-averaged fields (neglect-
ing along stream variations), consider the common approach
of parameterizing the cross-stream transient eddy heat flux
as di↵usion down the streamwise-averaged gradient (Mar-
shall and Radko 2003). Using the local di↵usivity defined
in (44), we can write the cross-stream eddy heat transport
as

H⇥
TE = ⇢0cp

I

⇥
F div

TE · n̂ds = �⇢0cp

I

⇥
Kdiv
? |r⇥|ds . (45)

If Kdiv
? were approximately constant along the contour, it

could be removed from the integral, and H⇥
TE could be

written only in terms of this constant and the streamwise-
averaged |r⇥|. But in fact, Fig. 10 shows that Kdiv

? and

|r⇥| are strongly correlated in space, with large di↵usiv-
ity precisely where the gradients are strong. This corre-
lation is due of course to the local nature of the instabil-
ity, and it opens the possibility that H⇥

TE could change
significantly without a change in the streamwise-averaged
gradient purely due to local dynamics downstream of the
ridge.

A final potentially significant di↵erence is the rapid
timescale associated with unstable growth in the presence
of topography. The question of the timescale of adjustment
for the global thermocline is one with significant conse-
quences for a range of climate problems (Jones et al. 2011).
As can be seen from Fig. 12, nonlinear eddies form much
more quickly when the ridge is present, and in fact the
whole thermocline equilibrates much more rapidly. This
implies that the response to a transient change in forcing
would also be more rapid. We have not performed such ex-
periments, but this would be an intriguing topic for future
study.
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FIG. 7. Zonally averaged isopycnal surfaces of potential density referenced to the surface (⇥0 = �
[kg m�3] - 1000) in the upper Southern Ocean. ⇥0 was chosen to better represent the upper ocean
structure, although only minor differences were found when compared with ⇥2. Grey lines are
for the CTL integrations and black lines for the perturbation experiments shown at the top of each
panel. Data were temporally averaged between model years 176-180.
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Many model studies have investigated the 
response of the Southern Ocean to changing 
wind stress:


• COARSE resolution models show strong 
sensitivity to the winds


• EDDY RESOLVING / PERMITTING models 
are much less sensitive 
 
→ eddies compensate for circulation 
changes due to winds


Found in everything from two-layer QG 
models up to coupled climate models  Farneti et al. 2010

GFDL Model: 
Triple Strength Winds 

coarse

eddies


