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Introduction

• Motivation: Longstanding idea that diapycnal 
mixing of 10-4 m2/s is required to sustain 
observed overturning and heat transport (Munk 
1966), while only 10-5 m2/s is observed within 
the strongly stratified thermocline 	


• Objective of the talk: What is the physical basis 
for the low value of 10-5 m2/s? (molecular value 
is 10-7 m2/s for reference)



Diapycnal mixing 
important 

• for vertical dispersion of tracers	


• As a non-viscous dissipation pathway for 
kinetic energy
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Question

Why is the Cox number (Keff/𝜅) only 
O(100) in the strongly stratified 

thermocline?



Physics of Turbulent Diapycnal Mixing
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Physics of Turbulent Diapycnal Mixing
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Vertical dispersion

z = zr(⇢, t) + ⇣(x, y, ⇢, t)
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It is the diabatic velocity that is responsible for vertical 
dispersion (Pearson et al. (1983), Lien and d’Asaro (2004))

Note: Every quantity can be expressed in terms of the 
displacement 𝜻
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Equivalent to study dispersion in Lorenz reference state. 
Incidentally, this state is for all practical purposes well 
defined in the ocean despite the nonlinear eq. of state
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Diabatic velocity field dominates vertical dispersion	

Could it also dominate viscous dissipation?

Goal: Examine the consequence of assuming (neglecting 
horizontal component of velocity) 

⌫kr(D⇣/Dt)k2 ⌧ ⌫krwrk2
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Assumption: Dissipation scale 	
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Since Pr=O(10), 𝜅=10-7m2/s, Keff=O(10-5m2/s) as observed
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Conclusions
• Evidence for diffusion limited buoyancy fluxes 

associated with turbulent mixing in strongly 
stratified regions of the ocean	


• Very simple theory seems able to account for the 
Cox number = O(100) observed in strongly 
stratified thermocline, predicted to scale as Prandtl 
number squared	


• Analytical progress possible by splitting velocity into 
diabatic and adiabatic components 	


• Is the theory valid or a coincidence?




