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Introduction

® Motivation: Longstanding idea that diapycnal
mixing of 10 m?/s is required to sustain
observed overturning and heat transport (Munk
1966), while only 10> m?/s is observed within
the strongly stratified thermocline

® Obijective of the talk:What is the physical basis
for the low value of 10> m?%/s? (molecular value
is 10”7 m?/s for reference)



Diapycnal mixing
Important

® for vertical dispersion of tracers

® As a non-viscous dissipation pathway for
kinetic energy



Rapid cross-density ocean mixing at mid-depths in
the Drake Passage measured by tracer release

Andrew J. Watson't, James R. Ledwell’, Marie-José Messias't, Brian A. King®, Neill Mackay', Michael P. Meredith®",
Benjamin Mills't & Alberto C. Naveira Garabato®*
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Mixing as non-viscous dissipation of KE
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Two main models for turbulent
diapycnal mixing

Ko = ;PQ Osborn-Cox (1972) model
FEK
Kefr = N Osborn (1980) model
r_ &pP Dissipation ratio

€K a.k.a. Mixing Efficiency



Why is the Cox number (Kef/x) only

O(100) in the strongly stratified
thermocline!



Physics of Turbulent Diapycnal Mixing
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Physics of Turbulent Diapycnal Mixing
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Vertical dispersion
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Density can only change as a result
of molecular diffusion
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RECOVERY
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It is the diabatic velocity that is responsible for vertical
dispersion (Pearson et al. (1983), Lien and d’Asaro (2004))
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Equivalent to study dispersion in Lorenz reference state.
Incidentally, this state is for all practical purposes well
defined in the ocean despite the nonlinear eq. of state

=<3

0.0 . . .

—0.1% "ﬁtll.l
B —0.2F 4] 0.9 o
€03 0.7 E
~ —0.4 HosS

byl |

| | | 0.1

—-50 0 50
Latitude [degrees]

Parcels with multiple
reference positions

Saenz, Tailleux et al.,
submitted

Ref. position as

function of S and
Theta

Potential Temperature [degC]
o

34 36 38 40 42
Salinity [g/kg]



Diabatic velocity field dominates vertical dispersion

Could it also dominate viscous dissipation!?

Goal: Examine the consequence of assuming (neglecting
horizontal component of velocity)

v||V(D¢/Dt)||* < v||[Vw,||?

Dissipation
ek = v||Vw,||? = ve?|[V (V)| sczle

ep = K||VC||°N;
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Assumption: Dissipation scale S ( 13 >1/4
X

= Kolmogoroyv scale

Since Pr=0(10), k=10-"m?/s, Ke/=O(10>m?/s) as observed
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Conclusions

Evidence for diffusion limited buoyancy fluxes
associated with turbulent mixing in strongly
stratified regions of the ocean

Very simple theory seems able to account for the
Cox number = O(100) observed in strongly
stratified thermocline, predicted to scale as Prandtl

number squared

Analytical progress possible by splitting velocity into
diabatic and adiabatic components

Is the theory valid or a coincidence?
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FIG. 1. Parameter space for interpretation of high-Reynolds number turbulence. Growing turbulence (Dk/Dt > 0) shown in
green, stationary turbulence (DK/Dt == 0) shown in black, and decaying turbulence (Dk/Dt < 0) shown in red. Select data
points have been offset from NT;, = 0 or ST}, = 0 for clarity. Lines delineating regimes are first order approximations.



