EXTRACURRICULAR GEOPHYSICS

or

"When Instruments Pick Up Signals They Were NOT Designed to Record"

Emile A. OKAL

Department of Earth & Planetary Sciences Northwestern University Evanston, IL 60208, USA

emile@earth.northwestern.edu

Ocean Scale Interactions, A tribute to Bach-Lien Hua Brest, Lundi 23 juin 2014

Il y a 40 ans que je connaissais Lien — et l'admirais.

Nos chemins s'étaient rarement croisés — après tout, elle travaillait en océanographie physique, et je m'occupais de séismes et de tsunamis...

Nous retrouvant en 2007, à l'improviste d'une rencontre à l'AGU, où elle avait présenté la prestigieuse conférence Lorenz, nous avions constaté avec fascination que la Physique du vaste Océan réservait des couplages subtils entre nos domaines, que des évènements de taille monstrueuse, tels le séisme de 2004 à Sumatra, parvenaient à révéler.

Et nous avions discuté avec enthousiasme de ces propriétés insolites qui rapprochaient nos efforts professionnels au sein des grands systèmes faisant "vivre" la Terre, à l'occasion de mes dernières et trop courtes visites à Brest jusqu'à l'été 2012.

Mais hélas, en ce triste automne de 2012, la Parque filandière veillait, et vint ravir Lien aux siens, au monde et à la science.

En hommage à celle qui fut une distante mais profonde amie, ma présentation examinera des exemples d'enregistrements insolites illustrant des couplages inattendus entre l'océan, la terre solide, et l'atmosphère.

EXTRACURRICULAR GEOPHYSICS

The occurrence of exceptional events, such as the 2004 Sumatra earthquake, occasionally gives rise to the recording of physical phenomena by instruments not designed for that purpose.

For example, a seismometer may record an air wave, a hydrophone may record a tsunami...

Such recording by "unprepared" or "incompetent" instruments often times illustrates a physical coupling between the medium of the phenomenon and that where the instrument is supposed to operate.

Such coupling being generally weak, requires a very large event (Sumatra, Maule...) to be detectable.

However, such instances of coupling are precious, since they shed light on some unsuspected properties of the physical waves and media involved.

SEISMOMETERS DETECT TSUNAMIS

(The Seismic "DART"?)

TSUNAMI RECORDED ON SEISMOMETERS

- Horizontal long-period seismometers (GEOSCOPE, IRIS...) record ultra-long period oscillations following arrival of 2004 tsunami at nearby shores [*R. Kind*, 2005].
- Energy is mostly between 800 and 3000 seconds
- Amplitude of equivalent displacement is **centimetric**

[Hanson and Bowman, 2005]

TSUNAMI RECORDED ON SEISMOMETERS (ctd.)

Enhanced Study [*E.A. Okal*, 2005–06].

- *RECORDED* **WORLDWIDE** (On Oceanic shores)
- *HIGHER FREQUENCIES* (up to 0.01 Hz) *PRESENT* (in regional field)
- Tsunami detectable during **SMALLER EVENTS**
- CAN BE QUANTIFIED

SUMATRA 2004: TSUNAMI RECORDED ON SEISMOMETERS

90

60

30

0

-30

-60

BBSF

норе

MSE

CASY

SBA

-60

Recording by shoreline stations is
WORLDWIDE

including in regions requiring strong refraction around continents (Bermuda, Scott Base).

• On some of the best records, (e.g., HOPE, South Georgia), the tsunami is actually visible on the raw seismogram!!

[But who "reads" seismograms in this digital age, let alone that of HOPE, South Georgia...]

CAN WE QUANTIFY SUCH RECORDS ?

HIGH-FREQUENCY TSUNAMI COMPONENTS

AISN 04 361

NOTE

STRONG

0

2 15.1020

Dispersed energy resolved down to T = 80 s.

Ile Amsterdam, 26 Dec. 2004

Peak-to-peak =

0.233E+06 du

Dispersed energy resolved down to T = 80 s. Ile Amsterdam, 26 Dec. 2004 2 15.1020 AISN 04 361 0 Peak-to-peak = 0.233E+06 du 0.012 dB 0.01 0 -4 REQUENCY (Hz) 0.008 -8 -120.006 -16 -20-240.004 -28 -320.002 -36 -4010000 30000 50000 TIME (s) NOTE STRONG HIGH-FREQUENCY TSUNAMI COMPONENTS

CAN WE QUANTIFY SUCH RECORDS ?

1. USE NORMAL MODE THEORY

TSUNAMIS: The NORMAL MODE FORMALISM

[Ward, 1980]

- At very long periods (typically 15 to 54 minutes), the Earth, because of its finite size, can ring like a bell.
- Such *FREE OSCILLATIONS* are equivalent to the superposition of two progressive waves travelling in opposite directions along the surface of the Earth.

Ward [1980] has shown that **Tsunamis come naturally as a special branch of the normal modes of the Earth,** provided it is bounded by an ocean, and gravity is included in the formulation of its vibrations.

TSUNAMI as SPHEROIDAL MODE : STRUCTURE of the EIGENFUNCTION

TSUNAMI EIGENFUNCTION is CONTINUED (SMALL) into SOLID EARTH

CAN WE QUANTIFY SUCH RECORDS?

2. MAKE SOME RATHER DRASTIC ASSUMPTIONS

CAN WE QUANTIFY SUCH RECORDS?

2. MAKE SOME RATHER DRASTIC ASSUMPTIONS

FORGET THE ISLAND (or continent) !!

QUANTIFYING the SEISMIC RECORD at CASY

• Assume that seismic record (*e.g.*, at CASY) reflects response of seismometer to the *deformation of the ocean bottom*.

FORGET THE ISLAND (or continent) !

• Use *Gilbert*'s [1980] combination of displacement, tilt and gravity;

Apparent Horizontal Acceleration (Gilbert's [1980] Notation):

$$AV = \omega^2 V - r^{-1} L (g U + \Phi)$$

or (Saito's [1967] notation):

$$y_3^{APP} = y_3 - \frac{1}{r \omega^2} \cdot (g y_1 - y_5)$$

• Use *Ward*'s [1980] normal mode formalism;

Evaluate Gilbert response on solid side of ocean floor, and derive equivalent spectral amplitude of surface displacement $y_1(\omega) = \eta(\omega)$.

- Use Okal and Titov's [2005] Tsunami Magnitude, inspired from Okal and Talandier's [1989] M_m ;
- Apply to CASY record at maximum spectral energy $(S(\omega) = 4000 \text{ cm}^*\text{s at } T = 800 \text{ s}).$

\rightarrow Find $M_0 = 1.7 \times 10^{30} \, dyn - cm.$

Published: 1.15×10^{30} dyn*cm [Stein and Okal, 2005; Tsai et al., 2005]

Acceptable, given the extreme nature of the approximations.

 \rightarrow Suggests that the signal is just the expression of the horizontal deformation of the ocean floor, and that

CASY functions in a sense like an OBS !!

QUANTIFICATION of SEISMIC TSUNAMI RECORDS

- Apply technique to dataset of 10 stations with direct great circle paths
- Use either Full Source computation (**Red Symbols**)

$$\overline{M_0} = 1.6 \times 10^{30} \text{ dyn} - \text{cm}$$

or M_{TSU} magnitude approach (Blue Symbols)

$$\overline{M_0} = 2.1 \times 10^{30} \text{ dyn} - \text{cm}$$

In good agreement with Nettles et al. [2005] and Stein and Okal [2005] (green dashed line)

NOTE: DRV and MSEY affected by substantial continental shelves.

THE FLOATING SEISMOMETER

2004 TSUNAMI RECORDED on ICEBERGS

Since 2003, we had been operating seismic stations on detached and nascent icebergs adjoining the Ross Sea.

The tsunami was recorded by our 3 seismic stations, on all 3 components, with amplitudes of 10–20 cm.

Seismic recordings of 2004 Sumatra Tsunami on Iceberg Nascent (NIB); 26 DECEMBER 2004

This time, the iceberg (and the seismometer) float like a raft on the sea and **record directly the 3-dimensional displacement of the tsunami.**

In the Shallow-Water Approximation,

$$AR = \frac{u_x}{u_z} = \frac{1}{\omega} \sqrt{\frac{g}{h}}$$

Iceberg: $T = 500 \text{ s}; \quad h = 500 \text{ m} \qquad AR \approx 11$

FIRST DIRECT MEASUREMENT OF HORIZONTAL COMPONENT OF TSUNAMI ON THE HIGH SEAS

ELLIPTICITY of TSUNAMI SURFACE MOTION

(Shallow Water Approximation)

$$AR = \frac{u_x}{u_z} = \frac{1}{\omega} \sqrt{\frac{g}{h}}$$

On the high seas (T = 1000-2000 s; h = 2000 - 5000 m),

AR can be typically between 10 and 25.

Sumatra 2004: $u_z \approx 1 \text{ m}$ (JASON; seismic stations)

 $u_x \approx 15$ meters ?

CTBT HYDROPHONES DETECT TSUNAMI

Or

One Filter Too Many !

CTBT HYDROPHONE RECORDS

In the context of the CTBTO ("Test-Ban Treaty Organization"), the International Monitoring System comprises six hydrophone stations deployed in the SOFAR channel, including three in the Indian Ocean.

300

HA07

☆

HA10

☆

HA09

0°

THA05

-60

180

HA11

180

60°

30°

0°

-30°

-60°

240°

PSUR

HA06

-120

HA03 🤇

HA02

HVO

РМО

Diego Garcia, BIOT

120°

НĂ01

120

○ HA08

О НА04

60

Each station features several (3–6) sensors, allowing *beaming* of the array

[*M. Tolstoy*, Columbia University]

These instruments recorded not only the hydroacoustic ("*T*") waves generated by the earthquake, but also its conventional seismic waves (Rayleigh), and most remarkably,

the tsunami itself.

[Okal et al., 2006]

TSUNAMI recorded by HYDROPHONES of the CTBTO

(hanging in ocean at 1300 m depth off Diego Garcia)

 \rightarrow Instruments are severely filtered at infra-acoustic frequencies.

TIME (hh:mm)

Note first obserever vation of DISPERSION of tsunami branch at VERY HIGH [tsunami] frequencies in the far field

 $\omega^2 = g \, k \, \cdot \, \tanh \left(k \, h \right)$

All of this on the high seas, unaffected by coastal response.

HIGH-FREQUENCY TSUNAMI COMPONENTS

Retrieving Seismic Moment from High-Frequency Tsunami Branch

- Use Hydrophone H08S1 from IMS at Diego-Garcia (BIOT)
- Deconvolve instrument and retrieve pressure spectrum

Retrieving Seismic Moment from High-Frequency Tsunami Branch (ctd.)

• Use *Okal* [1982; 2003; 2006] to convert overpressure at 1300 m depth (0.35 MPa*s) to surface amplitude η ,

outside classical Shallow-Water Approximation.

Find $\eta(\omega) = 78000 \text{ cm}^*\text{s}$ at T = 87 s.

• Use *Haskell* [1952], *Kanamori and Cipar* [1974], *Ward* [1980], *Okal* [1988; 2003] in normal mode formalism to compute excitation coefficients.

TOAMASINA, Madagascar 26-DEC-2004

(a)

(*c*)

Figure 5. (a): The 50-m freighter Soavina III photographed on 2 August 2005 in the port of Toamasina. (b): Sketch of the port of Toamasina showing its complex geometry. (c): Captain Injona uses a wall map of the port (ESE at top) to describe the path of Soavina III from her berth in Channel 3B (pointed on map), where she broke her moorings around 7 p.m., wandering in the channels up to the location of the red dot (also shown on Frame b), before eventually grounding in front of the Water-Sports Club Beach (white dot; Site 17).

50-m SHIP BROKE MOORINGS around 19:00 (GMT+3), FOUR HOURS AFTER MAXIMUM WAVES

Preliminary modeling for Toamasina [Tamatave], Madagascar

[D.R. MacAyeal, pers. comm., 2006]

•

- Finite element modeling of the oscillations of the port of Toamasina reveals a fundamental mode of oscillation at T = 105 s, characterized by sloshing back and forth of water into the interior of the harbor, thus creating strong *currents* at the berth of *Soavina III*.
- At this period, the group velocity of the tsunami wave is found to be **97 m/s** for an average ocean depth of 4 km.
- This would correspond to an arrival at 16:55 GMT, or 19:55 Local Time.
- This is in good agreement with the Port Captain's testimony

"After 7 p.m. and lasting several hours"

FROM GROUND UP ...

Or

Could Ionospheric Seismology

Help Tsunami Warning ?

IONOSPHERIC RADAR DETECTS SEISMIC RAYLEIGH WAVE 150 km UP !

- Atmosphere is not vacuum... and so, Rayleigh waves do not stop at a free boundary, but rather are continued upwards in the form of an pseudo-gravity wave, whose phase velocity is forced to that of the main Rayleigh wave.
- Energy density decays exponentially upwards, but since *material density decays faster*, wave amplitude can actually **increase with height**! Radar detects variation in TEC due to perturbation of ionosphere.

WHAT ABOUT TSUNAMIS ?

• *Hines* [1972] speculates that the concept could be extended to tsunamis.

But a tsunami must displace the atmosphere as it propagates and the displaced atmosphere must respond by generating a gravity wave. The parameters are such that these waves will be of the internal type, and so will grow exponentially with height. A rise of a few metres at the surface of the water might well amplify to a few km at ionospheric heights, and that sort of amplitude could hardly escape detection if it were sought. We arrive, then, at this speculative question: If we wish to keep track of the progress of a tsunami, and so predict with some assurance the onslaught of its destructive force, might we not serve our interests best by keeping watch on the ionosphere?

Peltier and Hines [1976] elaborated on the subject, but

IT TOOK CLOSE TO 30 YEARS TO OBSERVE...

STRUCTURE of the TSUNAMI WAVE in the ATMOSPHERE

- \rightarrow We compute the continuation of the tsunami wave both in the solid Earth and in the atmosphere using the generalized code "*HASH*" by *Harkrider et al.* [1974].
 - Flat-layered model

• 5-km deep ocean

• Period ≈ 1000 seconds

Density ρ

Vertical Amplitude

Horizontal Amplitude

TOWARDS DIRECT DETECTION of a TSUNAMI on the HIGH SEAS 3. TSUNAMI DETECTION by GPS IONOSPHERIC MONITORING

J. Artru, H. Kanamori (Caltech); M. Murakami (Tsukuba); P. Lognonné, V. Dučić (IPG Paris) -- (2002)

- Ocean surface is not free boundary Atmosphere has finite density
- Tsunami wave *prolonged* into atmosphere; *amplitude increases* with height.
- Perturbation in ionosphere (h = 150-350 km) detectable by GPS.

84 86 Longitude(deg)

TECU

SUMATRA 2004

FROM AIR DOWN ...

Or

Seismometers Listening

to Loud Sound !

SEISMOMETERS RECORD ATMOSPHERIC WAVES

Operation "Царь Бомба"		Boundaries
23 October 1961	AI FOR SOVIET AIR BLASTS MODELS D. N. DELHI 30 OCT 1961 Ø N. DELHI 23 OCT 1961 TROPICAL Ø PAS. 6 OCT 1961 O PAS. 10 SEPT 1961 ARDC Ø MERCURY 30 OCT 1961 O PAS. 4 OCT 1961 	Dyta Martana Miyobikha Byyan Cesepasa nyanya Serthereground
PRYSICAL RESEARCH VOLUME 67, No. 10 SEPTEMBE Propagation of Acoustic-Gravity Waves in the Atmosphere ¹ FRANK REFERCE AND DUITE HURKERIDER	$\begin{array}{c} 1962 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	Novava Zamly
		25 Megatons
1st passage of Acoustic-Gravity	Wave (A_1) PASADENA, Press	-Ewing Long-Per
1st passage of Acoustic-Gravity	Wave (A ₁) PASADENA, Press	-Ewing Long-Per
1st passage of Acoustic-Gravity	Wave (A ₁) PASADENA, Press	E-Ewing Long-Per Z
1st passage of Acoustic-Gravity	Wave (A ₁) PASADENA, Press	-Ewing Long-Per Z Na
1st passage of Acoustic-Gravity Ist passage of Acoustic-Gravity <td>Wave (A₁) PASADENA, Press</td> <td>E-Ewing Long-Per</td>	Wave (A ₁) PASADENA, Press	E-Ewing Long-Per
1st passage of Acoustic-Gravity Image: Acoustic-Gravity </td <td>Wave (A₁) PASADENA, Press</td> <td>-Ewing Long-Per Z</td>	Wave (A ₁) PASADENA, Press	-Ewing Long-Per Z
Ist passage of Acoustic-Gravity Ist passage of Acoustic-Gravity <td>Wave (A₁) PASADENA, Press</td> <td>E-Ewing Long-Per</td>	Wave (A ₁) PASADENA, Press	E-Ewing Long-Per
Ist passage of Acoustic-Gravity Ist passage of Acoustic-Gravity <td>with standard and extreme ADDC models. Data curves 1 to 5 from Doma and PASADENA, Press Market Panda Sea earthquake</td> <td>Ewing Long-Per Z Na E</td>	with standard and extreme ADDC models. Data curves 1 to 5 from Doma and PASADENA, Press Market Panda Sea earthquake	Ewing Long-Per Z Na E

SEISMOMETERS RECORD BOLIDE EXPLOSION

Yield from Body- and Rayleigh-wave modeling: 12.5 Megatons

MYSTERY WAVES RECORDED ON L.P. SEISMOMETERS

PASADENA 02 MAR 1959 — Press Ewing East-West

The "Mystery Wave" is an extremely long-period oscillation ($T \approx 500 \text{ s}$) recorded on all L.P. instruments at Pasadena, but absent at other stations.

THE MYSTERY WAVE (ctd.)

PASADENA — 02 MARCH 1959

The "Mystery Wave" is reminiscent of atmospheric waves generated by large explosions (volcanic or manmade), nut none is known at the time.

IT IS NOT RECORDED ANYWHERE ELSE

THE MYSTERY WAVE : MORNING GLORY

• 2004: *Tsai, Kanamori and Artru* crack the case of the mystery waves, showing that they are non-linear internal gravity waves, trapped by a temperature inversion inside the Los Angeles Basin, where they propagate at very slow speeds (5 to 25 m/s).

Figure 1. (top) Barograph record and (bottom) seismogram (very broadband channel) from station Pasadena for the 12 October 2001 event. The signals are correlated well in the ~ 1000 s period range. As a further note, there is an earthquake in Figure 1 (bottom) at around 0510 LT. For further information, refer to section 4.2.

 This phenomenon was observed in Northern Australia, where it was called the "Morning Glory" and studied by *Christie et al.* [1978 and *Clarke et al.* [1981].

The morning glory wave of southern California

Victor C. Tsai, Hiroo Kanamori, and Juliette Artru Seismological Laboratory, California Institute of Technology, Pasadena, California, USA Received 21 May 2003; revised 26 September 2003; accepted 14 November 2003; published 13 February 2004.

J. Geophys. Res. 109, (B2), B02307, 11 pp., 2004.

FROM AIR TO WATER TO GROUND

More Bombs at Sea

SEISMOMETERS DETECT T PHASES FROM ATMOSPHERIC NUCLEAR EXPLOSIONS

"PROCYON", Mururoa Atoll, 08 SEPTEMBER 1968

1.28 Megatons

Rarotonga, Cook Islands, WWSSN SPZ, Original magnification × 6250

Note large amplitude (26 μ m/s) but very short duration (2.7 s).

SEISMOMETERS DETECT T PHASES FROM

ATMOSPHERIC NUCLEAR EXPLOSIONS (ctd.)

"SUNSET" (Operation DOMINIC)

10 JULY 1962

210°

200°

5

205°

Christmas Island

215°

(N) ATMOS. NUCLEAR TEST, 10 JUL 1962 PPT

Recorded at PPT, Tahiti

Note much smaller amplitude (0.27 μ m/s) and longer duration (11.2 s).

- This difference in behavior would result in a *mis-identification* of the DOMINIC blasts as "earthquakes" using the amplitude-duration discriminant for *T* waves introduced by *Talandier and Okal* [2001].
- \rightarrow As the *T* phase is probably generated by the shaking of the island structure inside the water column, itself due to the coupling of the air blast with the solid structure, the characterisitcs of the *T* wave are expected to be controled by the geometry of the atoll, in relation to the source.
- In this respect, we note differences in the [available] characteristics of the **PRO-CYON** and **DOMINIC** tests: altitude (700 m vs. 1.7 km), location (over the atoll vs. off shore), and to a lesser extent in the size of the atolls themselves (154 vs. 322 km²).

FROM GROUND TO WATER

Tsunami from Big Bomb !

Operation "MILROW"

Amchitka Island 02 OCT 1969

1 Megaton

VISIONARY RESEARCH PROGRAMS (1969)

16.

An Instrumentation System

for Measuring Tsunamis in the Deep Ocean

MARTIN VITOUSEK

• Attempt to **Detect Tsunami on the High Seas**

A " Concept–DART "?

Tsunami Signal from the Milrow Nuclear Test (1 Megaton; 02 OCT 1969)! CAN IT BE QUANTIFIED ?

• Once filtered this signal suggest a peak-to-peak amplitude of 1.2 cm

- Use the [outrageously simplistic] model of an explosive source 1.2 km below an ocean of depth 1800 m [as per *Vitousek and Miller*, 1970];
- Use normal mode formalism [*Ward*, 1980] to compute a synthetic maregram at distance of 0.5°; infer an isotropic moment for Milrow: $M_0 \approx 5 \times 10^{24}$ dyn*cm;
- Use Haskell [1967] to derive a static reduced displacement potential

$$\psi(\infty) = \frac{M_0}{4\pi \rho \alpha^2} = 400,000 \text{ m}^3$$

which in turn scales to a yield

$$\mathbf{W} = \mathbf{800} \, \mathbf{kt}$$

which is only 20% smaller than the estimated yield of 1 Mt.

Given the approximations used, the agreement of the order of magnitude is

nothing short of staggering!

TSUNAMI by NEXT-DAY AIR ?

TSUNAMI GENERATION by *Volcanic Explosions at Sea*

Krakatoa [Sunda Straits], 27 August 1883

A catastrophic tsunami killed 35,000 people in Batavia (Jakarta). *Nomambhoy and Satake* [1995] showed that it can be well modeled by an underwater explosion.

The tsunami was reported recorded world-wide (on tidal gauges), which would seem to contradict the dispersive nature of the short wavelengths associated with sources of small dimensions...

HOWEVER ...

Press and Harkrider [1962, 1964] had shown that the tsunami is actually triggered by an **air wave** generated by an atmospheric explosion, and re-exciting the ocean as it propagates.

This explains

- the propagation of the *"tsunami"* along great circle paths occasionally crossing... a continent!
- the occasional early arrival of the tsunami at distant tidal stations
- and allows an estimate of the power of the explosion (100 to 150 Mt).

DIRECT "VISUAL" DETECTION of TSUNAMI on HIGH SEAS ??

• In principle, should be impossible

(Amplitudes too small; wavelengths too large)

TSUNAMI SHADOWS — Can we "SEE" Tsunamis, after all ?

There exist a number of somewhat anecdotal reports of tsunamis accompanied by a *"shadow"* on the ocean surface.

• *Walker* [1996] has published a shot from a video lending support to this idea.

Figure 1. The tsunami "shadow" can be seen just below the horizon and extends across the entire field of view of the camera. Approximately 12 minutes has to be added to the time indicated based on simultaneously recorded audio of a local radio station. The video was taken at an elevation of about 50 meters above sea-level.

Godin [2003] explains this phenomenon theoretically as follows:

- Tsunami wave creates steep gradient in sea surface.
- This gradient affects boundary condition of lower atmosphere wind near surface, making it *turbulent*.
- In turn, this turbulence creates *roughness* in Sea Surface, perceived as Tsunami Shadow.

Fig. 3. Jason-1 data for pass 129 from 6° S to 2° S obtained days before (Cycle 108) (1), coincident with (Cycle 109) (2), and 10 days after (Cycle 110) (3) the Sumatra-Andaman tsunami.(a) Sea surface height. (b) Ku-band radar backscattering strength. (c) C-band radar backscattering strength.

Fig. 4. Sea surface height data from Jason-1 ascending path 129 for cycle 109. Data segments 1, 2, and 3 chosen for detailed analysis of tsunami manifestations are shown in color. Breaks in the graph reflect gaps in the available SSH data.

At present, there is no universally accepted model of air flow over fast, as compared to the background wind, sea waves. Under assumptions made in (Godin, 2005), in the presence of a monochromatic tsunami wave, the wind speed relative to the ocean surface retains a logarithmic profile up

Godin et al. [2009] detect roughness in JASON altimeter records of 2004 Sumatra tsunami.

LOUD TSUNAMI ??

TSUNAMI DETECTED by INFRA SOUND ARRAYS (CTBT)

Arrays of barographs monitoring pressure disturbances carried by atmosphere.

(Deployed as part of International Monitoring System of CTBT.)

BEAM ARRAY to determine azimuth of arrival and velocity of air wave.

USE TIMING of arrival to infer source of disturbance as *TSUNAMI HITTING CONTINENT* then continent shaking atmosphere.

TSUNAMI DETECTED IN GEOMAGNETIC FIELD

A SENSIBLE IDEA...

- Tsunami moves water, a conducting fluid, inside the magnetic field of the Earth.
- Should create a current, which in turn, perturbs the Earth's magnetic field **B**.
- Indeed, tidal signals have been detected in daily fluctuations of **B** [*e.g.*, *McKnight*, 1995].
- → *Tyler* [2005] showed that the perturbation b_z of the vertical component of **B** should be linked to the tsunami's amplitude η through

$$\frac{b_z}{\eta} = \frac{F_z c}{h c_s} \cdot e^{-\kappa z}$$

where F_z is the unperturbed vertical field, $c = \sqrt{gh}$ the tsunami's phase velocity, $c_s = c + i c_d$ with $c_d = 2K/h$ and K the magnetic diffusivity $(K = 1/\mu\sigma)$.

- Unfortunately, in the case of the 2004 Sumatra tsunami, the areas with maximum η are at the magnetic Equator, and no signal was detected...
- → Otherwise, one would expect about 10 to 20 nT per meter of vertical sea surface displacement...

DETECTION DURING THE 2010 CHILEAN TSUNAMI

• *Manoj et al.* [2011] detected this effect during the 2010 Chilean tsunami using the geomagnetic station at Easter Island (IPC -- below, **red**)

- → The amplitude detected, ≈ 1 nT, is in good agreement with that of the tsunami on the high seas (15 to 20 cm), as recorded on DART buoys.
- They should **NOT** be comparing to a tide gauge record, which is strongly affected by harbor response.

CONCLUSIONS

- The exceptional size of the 2004 tsunami emphasizes the detailed structure of its tsunami.
- → The tsunami includes significant high-frequency components (3–10 mHz), propagating outside the SWA and which are relevant to harbor response.
- \rightarrow The tsunami does not stop at water interfaces, but is prolonged into both the solid Earth and the atmosphere.

It fully samples the "Earth's complex system"

- \rightarrow This remark enables the interpetation of the tsunami as a particular case of the Earth's free oscillations; this approach allows the quantification of many secondary properties of the tsunami, as excited by a dislocation source.
- → Because of the complex nature of the tsunami eigenfunction (consisting not only of a displacement field, but also of pressure, changes in gravity, tilt, etc.), many technologies can be used to detect the tsunami, using equipment already deployed.
- → More work would be warranted to understand the generation of deep infrasound signals, as detected in Diego Garcia.