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Mysteries of submesoscale stirring
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» What stirring mechanisms are at work!?
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|. Generation of compensated submesoscale T-S variance

by mesoscale stirring as predicted by Klein, Treguier &
Hua 98 [w/ R. Ferrari & J. Taylor]

2. Internal waves themselves can disperse tracers (!)
[w/ ]. Early]



North Atlantic Tracer Release Experiment

» HRP survey on 400 km? grid:
127 T/S/shear profiles (0-4000m)

NATRE GRID ..¢

» Moored current array: (200-3500m)
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T-S Profiles in NATRE 5
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> (PSY) Thermohaline fluctations have little signature on density:
compensated fronts of |-5km in horizontal, 10-100m in vertical.
=> Stirring along isopycnals will effectively stir tracers inclined to
isopycnals, not density (Klein, Tresuier and Hua 1998)




Journal of Marine Research, 56, 589-612, 1998

Three-dimensional stirring of thermohaline fronts

by Patrice Klein!, Anne-Marie Treguier' and Bach Lien Hua'

ABSTRACT

This study investigates the stirring of the thermohaline anomalies in a fully turbulent quasi-
geostrophic stratified flow. Temperature and salinity fields are permanently forced at large scales and
are related to density by a linear equation of state. We show, using some inherent properties of
quasi-geostrophicturbulence, that the 3-D ageostrophiccirculationis the key dynamical characteris-
tic that governs the strength and the spatial distribution of small-scale thermohaline fronts that are
strongly density compensated. The numerical simulations well illustrate the formation by the
mesoscale eddy field of sharp thermohaline fronts that are mainly located in the saddle regions and
around the eddy cores and have a weak signature on the density field. One important aspect revealed
by the numerical results is that the thermohaline anomalies experience not only a direct horizontal
cascade but also a significant vertical cascade. One consequence of this 3-D cascade is that the
ultimate mixing of the thermohaline anomalies will not be necessarily maximum at the depth where
the large-scale temperature and salinity anomalies are maximum. Some analytical arguments allow
us to identify some of the mechanisms that drive this 3-D cascade.



Temperature variance budget in NATRE

Where large scale lateral gradients are present, mesoscale
stirring generates variance.

Med Salt level (lateral gradients present)

Mesoscale

Mean \ l

Turbulence —— Dissipation

Central waters (weak lateral gradients)

VT wT + KT =«k|[VT)?



Temperature variance budget in NATRE
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QG modeling

» QG simulation on 10002 km domain, | km resolution, with
80 vertical levels of 35-120m

» Mean T/S from HRP; density from nonlinear EOS; spice
from linear EOS applied at Med Salt Tongue level; mean
velocity from moored array

T-S distribution Eddy velocity
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Lateral structure

102 .

» Spectra: Tracer ~ K-/, density ~ K~

10

» T,S passive tracers => filamentation
compensated in effect on density 3 1o

» Interior: little density gradient,ample
tracer variance along isopycnals
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Vertical structure

» 3D cascade => ample strain and shear at

submesoscales

» Shear/Strain ~ N/f (independent of scale)

» Tracer (T & S) filaments are 3D, with

aspect ratios following shear/strain ~N/f
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Kinematic argument for tracer slope

Tracer blob evolves with diffusion and velocity:
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Tracer and Velocity Aspect Ratios
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Observational support
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Conclusions - Part |

» Mesoscale stirring produces T-S intrusions consistent
with those found in NATRE

» Variance production by mesoscale stirring sufficient to
explain measured turbulent dissipation at MST level

» Vertical diffusion can set observed tracer filament
widths: Eddy stirring linked to small-scale turbulence

» W/ J. Taylor: identical 3D periodic QG and
Boussinesq simulations show mesoscale controls
stirring, even at high Ro, when Bous model forms k-3
submesoscale energy spectrum



16

Balanced initial BC unstable states

M2
U = 7 sin(loy)sin(mgz)
m
Start with flow 1n geostrophic balance: { 20
M
b= l—cos(loy)cos(mgz) + N?z
0
Simulation 1 D
periodic in X,y,z

Ro= M?/Nf =0.125

Ri = N*f*/M* = 64

N/f =2

(N, Ny, N,) = (512,512, 128)

Simulation 2

Ro= M?*/Nf =0.418

Ri= N*f?/M* = 5.76
N/f=5

(N, Ny, N,) = (512,512, 256)

10 km




Energy spectra and fluxes

» Small scales more energetic in high Ro Boussinesq sim

» A forward energy cascade occurs for L < | km

Energy spectrum, Ro=0.125 Energy spectrum, Ro=0.418  Energy flux, Ro=0.418
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But tracer spectrum has -1 slope in both cases!

Lateral tracer slice

Variance spectra
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Tracer stirring by mean gradient

Spectral variance budget
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The “Scalable Lateral Mixing and

Coherent Turbulence” Directed
Research Initiative (ONR)

Observation (mostly)

Eric D'Asaro (APL/Seattle), Lou Goodman (UMass), Jody Klymak (UVic),
Eric Kunze (APL), Jim Ledwell (WHOI), Craig Lee (APL), Murray Levine (OSU),
Jonathan Nash (OSU), Tom Sanford (APL), Kipp Shearman (OSU),

Miles Sundermeyer (UMass), Brian Concannon (NAVAIr)

Modeling/ Theory (mostly)

Raffaele Ferrari (MIT), Ramsey Harcourt (APL), Pascale Lelong (NRWA),
Amala Mahadevan (WHOI), Jim McWilliams (UCLA), Jeroen Molemaker (UCLA),
Tamay Ozgokmen (RSMAS), Roger Samelson (OSU), Erie:Skyllingstad (OSU),
Shafer Smith (Courant/NYU), Amit Tandon (UMass), Leif Thomas (Stanford)



Evolution of the DRI

Timeline

May 2008: Initial planning meeting

Jan 2009: ONR funding began

June 2010:  Virtual experiment

Aug 2010:  Test cruise (Cape Hatteras)

June 2011:  Summer experiment (Cape Hatteras)
Mar 2012:  Winter experiment

DRI Objective: Develop a combined modeling and
observational program to investigate the mechanism that
control transport and mixing at lateral scales of

| 0O0m- | Okm.



Hypothesis-driven plan

ONR insisted that the group develop a set of competing hypotheses that
would serve as a basis for all future planning. Initial meetings led to:

|. Inhomogeneous IW mixing creates
PV anomalies that are responsible for
significant isopycnal mixing.
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2. Mesoscale straining leads to a
cascade of tracer and PV variance, and
submesoscale isopycnal mixing.
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3. Unbalanced submesoscale
instabilities feed a forward cascade of
energy, scalar and PV variance, leading
to isopycnal and diapycnal mixing.
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Two focus areas

.“Open Ocean”

(shallow ML, moderate EKE)

0.03 0.06 0.08 0.10 0.12 0,14 0.1¢ 0,182 0.20 0.22 0.2¢4 0.26 0.28 0.30

Figure 1: Sea surface chlorophyll distribution
derived from sea surface color in the western
Sargasso Sea on May 27, 2007 showing generic
open ocean conditions that could be used to test
hypotheses 1-3.

I."“Frontal”
(deep ML, strong front)

Sampling Approaches for Frontal Study

Eulerian mapping (Microstructure Profiles) Float/glider
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Figure 2: Schematic of possible sampling
strategies for field site 2 superimposed on a
simulation of a submesoscale frontal instability
(from Thomas, 2007). Potential experimental
elements are described in the text.



June 201 | campaign

Large scale sampling

b

LIDAR
Platform Instrument, Sensors, and/or Activity Responsible
Investigators
C. Hatteras | Dye Release Ledwell
Lagrangian Floats, CTD, Fluorometer D’ Asaro
Drogued Drifters and T-strings Sundermeyer, Lelong
OSU Moving Vessel Profiler, CTD, Fluorometer Levine
UMass Towed Acrobat, CTD, Fluorometer Sundermeyer, Birch
Hull-mounted ADCP Pierce
Endeavor EM-APEX Constellation, CTD, u, v Sanford, Lien, Dunlap
U.Vic. Moving Vessel Profiler, CTD, Fluorometer Klymak
OSU Gliders Shearman
Oceanus Triaxus Towed CTD, Fluorometer, ADCP Lee
T-REMUS, CTD, ADCP, Microstructure Goodman
Gateway Buoy, T-string Goodman
Hammerhead towed CTD/Microstructure Kunze
All 3 ships Ship ADCP Pierce
All 3 ships Ship ADCP/Towed CTD synthesis Shcherbina
SVP Dirifters Lelong, Ozgokmen
P3-Orion LIDAR Concannon, Terray
APL-UW INFLO data system Harcourt
Shipboard data systems Sellers, Stolp
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VWWeak strain area - rhodamine dye release
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Dye vs Drifter Diffusivity

» Analysis of dye spreading by D. Birch and M.
Sundermeyer implies lateral diffusivity

of O(1) m?/s

» |. Early: Drifters released with dye provide an
alternate means to compute lateral diffusivity;
find O(.1) m*/s

» What is causing the observed diffusivity?

» Why are the dye and drifters so different!?



Drogued drifters to track dye

COM Drifters relative to COM

i Drifters relative to the center of mass
Drifter center of mass
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Density from gliders

Representative profile N2
O I I I I 0 I I

z (meters)

Dye 1njection
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Particles on random walk with constant diffusivity

meters

Drifter positions on day 0 at 0:00 hours
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Drifter trajectories in COM coordinates

Drifter positions on day 0 at 0:00 hours
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Strain-Diffusivi

» Isotropic diffusivity is not a good model.
» The drifters are clearly being stretched by a strain field.

» Need a model to account for strain and diffusivity.



Strain-Diffusivity Model

s Model for tracer gb(x v Y, t)’

—

¢t + % (x cos 20 — y sin 20) ¢,

—% (xsin 20 + ycos20) ¢, = KV .

3 Model for particle (z;(t),9:(t)),  [Birch & Sundermeyer]

o[ 20 ] -5 n T [ ] vemaw.

% Strain o, angle §, diffusivity k, are parameters

”
—

to find by minimizing an error function.



Drifter trajectories in COM coordinates

Drifter positions on day 0 at 0:00 hours
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Drifter trajectories with strain removed

Drifter positions on day 0 at 0:00 hours
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Velocity spectra from unstrained, COM drifter tracks

anticyclonic motions

ditfusivity
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Velocity spectrum looks like internal waves.
Single particle diffusivity estimates also give x = 0.2 m? /s



Null hypothesis test

» Below scale of eddy, IVWs are only motion observed

» Dye spreads on isopycnal, drifters spread at constant depth,
with average velocity over 6m length of drogue

» Advect particles with GM spectrum of waves, with energy
matched to observations:

» Dye-like particles: isopycnal following and diffusive, subject
to shear dispersion.

» Dye-like non-diffusive particles: isopycnal following, but
not subject to shear dispersion.

» Drifter-like particles: fixed z, averaged over depth.



Drifter-Like Particles

GM linear wave model

set to match observed
energy levels of dye release
region.

More particles than were
released in experiment.

Q Observed 2" moment

Drifter positions on day 0 at 0:00 hours
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Dye-Like Particles

Drifter positions on day 0 at 0:00 hours

» Much higher diffusivity 6000
than for drifter-like
particles (Dewar 1980 4000/

predicted similar result!)
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» Diffusive & non-diffusive

2 e o o o
(not shown) cases g O , .. :
indistinguishable => shear e .
dispersion negligible (Birch o = e
& Sundermeyer, too)
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Stokes drift from internal waves!?

» Stokes drift  u” = (&-V)u € =u

» For 3D transverse plane wave, u x k~ = u” = ()
» But with modal solutions, u = U cos(kx + ly — wt)F;(z)

consistent with boundary and polarization conditions,
Stokes drift does not vanish...

» Effect greatly exaggerated by non-constant N2!

» [and even 3D plane waves yield drift for drifters on
constant-z surfaces (Dewar 1980)]



Stokes drift for observed stratification

Stokes drift from a 1.0 cm/s, 150 meter wave, modeled Stokes drift from a 1.0 cm/s, 150 meter wave, theoretica
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THE EFFECT OF INTERNAL WAVES ON NEUTRALLY BUOYANT rmré
AND OTHER NEAR-LAGRANGIAN TRACERS
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Conclusions - Part 2

» Drifters consistently show a much lower diffusivity than
the dye release.

» The difference may be explained by their different
transport mechanisms.

» Shear dispersion does not appear to be significant.

» Stokes drift may account for the observed diffusivity.



