The role of closed gyres in the zonal transport of the ACC

L.-P. Nadeau and R. Ferrari

Antarctic Circumpolar Current

- Most voluminous ocean current (transport= 130 Sv)
- Global importance: mixes together Atlantic, Indian and Pacific Oceans waters
- Still lack a robust quantitative theory for what sets the magnitude of the circumpolar transport

Consensus:

Transport = Balance of 3 terms in Zonal Momentum Budget

• Surface → Input by the wind

Interior — Downward transport by geostrophic eddies

Bottom → Sink by topographic form drag

Focus of most recent studies

by geostrophic eddies

Surface → Input by the wind
↑
 Explains Transport
Interior → Downward transport

Zonal Momentum

• Bottom --> Sink by topographic form drag

Focus of most recent studies

Questions:

- Does the topograghic form drag exert an active control on the (baroclinic) transport?
 - → yes
- Is the effect of the topography on the ACC better thought of as a local or a global constraint?
 - global

Questions:

- Does the topograghic form drag exert an active control on the (baroclinic) transport?
 - yes
- Is the effect of the topography on the ACC better thought of as a local or a global constraint?
 - closed gyres

EXPERIMENTAL SETUP

- 1. Closed box with topography
- 2. Channel with topography
- 3. Flat bottom Channel
- **QG** and **Primitive Eq.** numerical simulations
- Wind forcing but no buoyancy forcing

Barotropic Streamfunction

Weak Forcing

Strong Forcing

Box + Ridge

Channel + Ridge

Channel Flat

COMPARISON FLAT AND RIDGE

Baroclinic Transport

DECOMPOSITION HYPOTHESIS

Hypothesis

Total barotropic streamfunction can be decomposed in a **"gyre mode"** (Sverdrup gyres), contributing no barotropic transport, and a **"circumpolar mode"**, contributing all barotropic transport.

ROLE OF EDDIES

Vertical Structure of the Sverdrup Flow

Physical Mechanism:

Eddy driven bottom circulation sustains **topographic form drag** that balances wind stress and causes transport saturation

EDDY MOMENTUM TRANSFER

Dominant zonal momentum balance at statistical equilibrium

$$\langle \psi_{1x}\psi_{1yy}\rangle - \frac{f_0^2}{g'H_1}\langle \psi_2\psi_{1x}\rangle - \frac{1}{\rho_0H_1}\langle \tau\rangle = 0$$
 Lower:
$$\langle \psi_{2x}\psi_{2yy}\rangle - \frac{f_0^2}{g'H_2}\langle \psi_1\psi_{2x}\rangle + \frac{f_0}{H_2}\langle \psi_2 h_b\rangle = 0$$
 Topographic

EDDY MOMENTUM TRANSFER

Spectral decomposition according to zonal wavenumber of the interfacial form stress term

EFFECT OF THE RIDGE HEIGHT

Why do we observe gyres in an open channel?

Increasing height

 Ψ_{Bt}

$$\beta y + (f_0/H)h_b$$

If topogrophy is sufficiently steep to bring geostrophic contours close together, a frictional boundary layer develops that acts as an "effective wall".

 $h_0 = 425 m$

closed contours open contours

 $h_0 = 850 m$

 $h_0 = 1275m$

 $h_0 = 2600 m$

EFFECT OF THE RIDGE HEIGHT

Effect of the Ridge height on the transport

EFFECT OF THE CHANNEL LENGTH

Varying Channel Length: modes can be decoupled

Circumpolar mode independent of L_x **Gyre mode** increases increases with L_x $L_{x} = 3000 \text{km}$ $L_x = 6000 \text{km}$ $L_x = 10000 \text{km}$ c) a) b) e) 250 200 Transport (Sv) 150 $L_x = 20000 \text{km}$ 100 50 10 15 20 L_x (x1000km)

EFFECT OF THE WIND STRESS CURL

EFFECT OF THE WIND STRESS CURL

EFFECT OF THE BOTTOM FRICTION

Bottom Friction

EFFECT OF THE BOTTOM FRICTION

Bottom Friction

SUMMARY

- Closed recirculating gyres develop in the lee of major topographic ridges.
- Circulation can be decomposed in a gyre mode and a circumpolar mode.
- Each mode can be decoupled (can favor one mode without affecting the other).
- However, specific effect of the form drag generated by the gyre mode onto the circumpolar mode is still not clearly defined.

SUMMARY

Initial hypothesis

Revised hypothesis

